
Efficient Testing
 with All-Pairs
by Bernie Berger

	 Engineering Productivity:

C
O

R
E

 N
º 1

 -
O

ct
ob

er
 2

01
0

Some ways to measure it and
manage it by Tom Gilb

Agile software
development with
distributed teams

by Jutta Eckstein

Product Qualities
Approach
by Ryan Shriver

Welcome

04 Editor’s note

04 About us

05 Welcome to the c0re maga-
zine

Management
06 Agile software development
with distributed teams
Jutta Eckstein
..
09 How to be a better tester
Jan Sabak
..
13 Optimal testing tasks ma-
nagement using Critical Chain
scheduling
Ladislau Szilagyi

IN
D

E
X Quality in Project

17 Engineering Productivity:
Some ways to measure it and
manage it.
Tom Gilb
..
25 Test Process Maturity and
Related Measurement
Nagaraj M Chandrashekhara

Software Testing

47 Getting the truth, the whole
truth and nothing but the truth
from your Test Management
Tool…Dream or Reality?
Eric RIOU du COSQUER
..
51 What a Tester Should
Know, At Any Time, Even After
Midnight
Hans Schaefer
..
57 Efficient Testing with All-
Pairs
Bernie Berger
..
63 The Case for Peer Review
SmartBear Software
..
66 Five Types of Review
SmartBear Software
..
72 Confrontation of develo-
pers and testers
Marina Lager and Andrey Konushin
..
74 Quality Management
Systems, Environmental
Management Systems, etc. –
Are They All Informatization
and Efficiency Improvement
Projects or Just a Farce?
Stanislav Ogryzkov

Software Engineering

30 Comparison of Change
Management Systems: Cle-
arQuest, VSTS, Redmine and
BugTracker.NET
Stanislav Ogryzkov
..
38 What’s fundamentally
wrong? Improving our appro-
ach towards capturing value in
requirements specification
Tom Gilb and Lindsay Brodie

Welcome

04

Bartłomiej Prędki 		
		

Started his professional experien-
ce in 2004 as a tester of mass-
market mobile applications. Within
next years he gained experience
in Testing and Quality Assurance
areas, mostly focused on Tele-
communications industry. During
his career he was involved in te-
sting, managing testing proces-
ses, training, technical support,
requirement analysis, recruitment,
technical documentation creation
and review.

Besides his mobile and telecom-
munications experience, he was
also involved in financial and ban-
king system projects.

Holder of ISTQB Advanced Tech-
nical Test Analyst certificate. He
lives and works in Wroclaw, Po-
land.

Editor’s note
Quarterly c0re (4 numbers per
year) is published by gasq Servi-
ce GmbH.

WWW
www.coremag.eu

Chief editor:
Karolina Zmitrowicz
karolina.zmitrowicz@coremag.eu

Editorial Staff:
Bartłomiej Prędki
bartlomiej.predki@coremag.eu

Mailing address:
C0RE Magazine
c/o gasq Service GmbH
Kronacher Straße 41
96052 Bamberg
Germany

Advertisements:
info@coremag.eu

All trade marks published are pro-
perty of the proper companies.

Copyright:

All papers published are part of
the copyright of the respective au-
thor or enterprise. It is prohibited
to rerelease, copy or modify the
contents of this paper without the-
ir written agreement.

Persons interested in writing are
asked to contact:
editor@coremag.eu

About us

Karolina Zmitrowicz

Karolina started her professional
experience in 2006 as a Quality
Assurance specialist working on
international projects in banking
sector. Within next 6 months she
become Test Leader and Lead
QA Consultant supporting testing
activities on customer side and le-
ading customer test team.

During her career she worked as
a Test Leader, Change Manager,
Technical Writer, Business and
System Analyst. She has been
involved in testing and managing
testing, requirement engineering,
business analysis, trainings, tech-
nical documentation creation. She
currently works as a System Ana-
lyst for leading Polish insurance
institution.

She is an author of several publi-
cations in QA and BA area, trying
to apply best quality assurance
practices in analysis and require-
ment processes.

Certified ISTQB Test Manager and
REQB Certified Professional for
Requirements Engineering. Certi-
fied quality management systems
manager and leading auditor (ISO
9001: 2008).

Currently she lives and works in
Warsaw, Poland.

05

“Quality is not an abstraction; it’s a
measurable, manageable business
issue.”

John Guaspari

What does a quality mean for testers?
What does a quality mean for business
analysts? What is a quality for develo-
pers? How quality is perceived by project
managers?

How can you ensure the quality of a pro-
duct? How to verify it?

What techniques can be used to improve
the quality of a process or product? What
kind of tools can be used?

With your help, we will try to answer the-
se questions.

We would like to introduce c0re magazi-
ne – free magazine focused on quality in
IT. Our aim is to provide global platform
for IT professionals to share knowledge
and experience in quality area. We wo-
uld like to present different points of view
and different perspectives on quality. If
you are interested in quality assurance,
testing, process’ quality – this magazine
is for you.

We know many websites, blogs, forums
concerned with QA and quality. We know
many authors writing interesting and va-
luable papers – unfortunately they are not
known to broader community – we want
to introduce them.

Why not to create a tool for exchanging
experience and information, which pe-
ople working in quality area can share in
one place? Why not to help people who
have just started their QA career to ga-
ther knowledge and learn from the best

Welcome to the
 c0re magazine

international experts?

Based on the above questions we have
created the concept of c0re – magazine
created by specialists for specialists.
In c0re magazine you will find articles
written by international experts, grouped
in four basic sections:

• Software engineering - topics which co-
ver requirements collecting and analysis,
designing, software development life cyc-
le, development methods, change mana-
gement, configuration management etc.

• Software testing - practical aspects re-
lated to testing - techniques, methods,
tools.

• Quality in project - quality assurance and
control in the process level.

• Management - for those, who are invo-
lved in QA team leading, project and pro-
cess management.

In addition, some other sections exist as
well: book’s reviews, notifications about
events and conferences, tools’ reviews
and comparisons, tips & tricks, feuille-
tons.

We hope the magazine will meet your
expectations and give a motivation to
further self-development. We hope that
some of you will decide to share your
experience and present it to our commu-
nity. Your insight will help us to shape the
c0re according to your needs - providing
comments on the contents of the maga-
zine, providing new ideas and proposals.
We invite you to cooperate with us!

Chief editor
Karolina Zmitrowicz

Agile software
development with
distributed teams

Author: Jutta Eckstein

basic

intermediate
advanced

About the author:

Jutta Eckstein is an independent
coach, consultant and trainer from
Braunschweig, Germany. Her know-how
in agile processes is based on over ten
years experience in developing object-
oriented applications.
She has helped many teams and
organizations all over the world to make
the transition to an agile approach. She
has a unique experience in applying
agile processes within medium-sized to
large distributed mission-critical projects.
This is also the topic of her books ‘Agile
Software Development in the Large’
and ‘Agile Software Development with
Distributed Teams’. She is a member of
the AgileAlliance and a member of the
program committee of many different
European and American conferences in
the area of agile development, object-
orientation and patterns.

Understanding Agility

A historic marker indicating that agile
methods no longer would be considered
mere hype or a fringe movement was
Scott Adams’ Dilbert comic strip on agility1

. With every passing year, agile concepts
have become more firmly ent renched
in mainstream business and, today, are
largely accepted in the modern market. Of
course, while noting the movement of agile
methods from the realm of fringe, Adams
also exposes typical misunderstandings,
illformed expectations, and downright
strange interpretations that some think
still pervade the agile approach.

Agility has come into its own as a value
system defined by the Agile Manifesto2
. Based on twelve principles created
to ensure the value system3 , the Agile
Manifesto demonstrates that there is
more to agile development than just one
specific methodology, such as Extreme
Programming4 or Scrum5 .

The first value stated in the manifesto
favors “individuals and interactions over
processes and tools.” The processes
referenced in this first value statement
include agile development processes,
which means teams must ensure that
their development process supports their
needs in the best way possible. Using
the principles in the manifesto, teams
can find guidance on how to modify and
adjust their development processes to
best support their needs.

Core Value Pair Statements

The values expressed in the Agile
Manifesto apply to all agile projects,
superceding guidelines of any specific
agile process. The core of the manifesto
compares in four statements two values
and argues that although each value
provides a value in general, the first value
is more important than the second and

that the latter half of the each statement
is only valid if it supports the former.

• Value Pair Statement #1, “Individuals
and interactions over processes and
tools,” highlights the idea that it is always
the people involved in a project and how
they collaborate that determine a project’s
success or failure. The manifesto does not
devalue processes and tools (otherwise,
we wouldn’t talk about processes, and
the agile community wouldn’t have
created tools such as unit-testing
frameworks, integration and configuration
management tools, and others), but if
individuals don’t work together as a team,
the best tools and processes won’t help
the project succeed.

• Value Pair Statement #2, “Working
software over comprehensive
documentation,” is perhaps the most
often misunderstood of the four
statements. People unfamiliar with agile
development may mistakenly believe
agile projects don’t document, or even
disdain documentation. Not so. In the
same way that processes and tools play
a major role in successful development,
documentation also plays a major
role. However, this value comparison
expresses that working software is the
critical success factor for any development
effort. Documentation might be needed
to support or to understand the working
software, but it can’t and shouldn’t be an
end in itself.

• Value Pair Statement #3, “Customer
collaboration over contract negotiation,”
emphasizes that although you need a
contract, it can never be a substitute for
a good relationship with your customer.
In order to deliver a satisfactory product,

Management

06

07

involve customers regularly throughout
the development process.

• Value Pair Statement #4, “Responding to
change over following a plan,” advocates
the importance of reacting to changes
(especially in terms of requirements
changes), rather than sticking to an
inappropriate or obsolete plan. We
accept that both the customer and the
project team will learn over time, and we
want to acknowledge this learning and
incorporate it into the development effort.
If the finished product delivers what the
customer and we planned for before
confronting changes and disregards
anything we learned during development,
the product will be a failure, even if it
fulfills a contract.

The agile value system accommodates
collocation as well as distributed software
development. Later in this chapter, I
examine implications of agile principles
regarding globally distributed projects.

Systemic Approach

Agile development promotes a systemic
approach that is supported by a closed-
loop routine of planning, doing (or
performing), inspecting (or analyzing),
and adapting, as follows:

• In Planning, plan immediate activities
(having broken down a development
project into deliverable chunks, begin
planning for the first task). This is most
often short-term planning, focusing on
the next iteration, but it can also be long
term, such as planning the next release.

• In Doing, perform activities planned in
the first step.

• In Inspecting, analyze the performance
of the activities planned in the planning
step. Did all work as planned? Was there
a specific process that worked well and
would be appropriate to repeat in the
future? Did a specific process or plan fail
or require adjustments for the future?

• In Adapting, determine what kinds of
adjustments the previous inspection step
revealed are needed in order to improve
development. In this step, decide
necessary actions for the following
iteration.

The last step in this closed-loop routine
provides input for the first step in the next

round, and so on.

Risk Reduction

The goal of an agile project is not only to
deliver a product at the end of the project’s
lifetime (called a deadline), but as well to
deliver early and regularly. In order to do
so, we divide the project’s lifetime into
development cycles. A bigger cycle that
produces much functionality (sometimes
called a feature pack) is called a release.
Within that, we use a smaller cycle to
organize work in smaller chunks, and
to deliver smaller functionalities. This
smaller cycle is called an iteration6. Both a
release and an iteration lead to a delivery
or a potentially shippable product.

A tremendous advantage of agile
development is risk reduction through high
visibility and transparency. By developing
iterations of a working system, receiving
regular feedback from the customer and
from tests, and with tangible progress,
you have access to the actual status of
the project. Knowing the actual status of
the project in turn enables you to make
decisions regarding further deliverables
and necessary actions. For example, if
you encounter that the system does not
fully satisfy the customer and it can’t be
turned in the right direction, you have
the advantage of being able to stop the
project early, before all the money has
been spent.

The Productivity Myth

Another common, and misguided,
argument is that following an agile
approach will greatly increase a
development team’s productivity
compared to other approaches. While this
can be true, it is not always necessarily
so. Agile development guides a team to
deliver a working system frequently—
“frequently” meaning in iterations lasting
one to four weeks. A “working system,”
on the other hand, is defined by the
customer’s evaluation of usability. Thus,
by providing a working, usable system
periodically, say, every two weeks, an
agile team ensures maximum business
value for its customer.

Therefore, following this approach, your
customer might decide to proceed with
an operational system earlier. This will
give your customer a market advantage.
However, it does not necessarily mean
that the project as a whole is finished—
meaning all required features are
implemented—earlier.

More Than Practices

Agility is more than a collection of
practices. Every so often, I hear people
mixing up specific practices with agility.
Practices—for example, Extreme
Programming’s pair programming or test-

Management

Management

08

driven development—are a great means
to preserve the agile value system;
however, these practices are not the
value system itself. For instance, you can
successfully apply pair programming and
use a linear (or waterfall) development
approach.

Neither Chaotic nor
Undisciplined

Many people consider the agile approach
to be an undisciplined approach. Some
regard agile as an ad-hoc approach that
doesn’t require any planning, one in which
people act independently according to
whim. Sometimes, the agile label is used
as an excuse for lack of preparation. For
example, if a person has to conduct a
workshop or deliver a talk and doesn’t
prepare material, his or her presentation
will consequently follow an ad-hoc
approach. This person might argue that
the approach used is agile, and therefore
doesn’t require preparation or planning.
Instead, absolutely the opposite is true:
Agility requires a lot of planning, even
more planning than a linear approach.
As Lise Hvatum states, “Agile is highly
disciplined and more difficult, requires
more maturity, than waterfall7 .”

The reality is, agile requires and embraces
planning. In agile development, the
artifact of a plan is not overly important;
the activity of planning, however, is
essential. Jakobsen contrasts a choice
between an old management style—for
example, Taylorism, where managers
dictate procedure—and an innovative
management style—such as Lean Jidoka8
, based on trust, respect, empowerment,
and belief that it is the people who use a
process who are best able to improve it9 .

Improving processes means changing
your original plan, and preparing for
future re-planning to utilize what you
learn as development occurs.

Reprinted by permission of Dorset
House Publishing (www.dorsethouse.
com), from Agile Software Development
with Distributed Teams: Staying Agile in
a Global World (ISBN: 978-0-932633-
71-2), pp. 16-22. Copyright (c) 2010 by
Jutta Eckstein (www.jeckstein.com). All
rights reserved.

1 See S. Adams, Dilbert (http://www.dilbert.
com).

2 See the Agile Manifesto online: http://
agilemanifesto.org. For an analysis of the Agile
Manifesto, see A. Cockburn’s Agile Software
Development: The Cooperative Game, 2nd ed.
(Boston: Addison-Wesley, 2006).

3 For my thoughts on agile development for large
projects, see Agile Software Development in the
Large: Diving Into the Deep (New York: Dorset
House Publishing, 2004).

4 For Extreme Programming, see http://c2.com/
cgi/wiki?ExtremeProgramming Roadmap.

5 For Scrum, see http://www.controlchaos.com
and http://www.scrumalliance.org

6 In Scrum, an “iteration” is called a “sprint.” I
personally do not like that term because, for me,
it connotes frantic, unreserved effort. Iterations
should involve adequate resources so that teams
are not racing to finish.

7 L.B. Hvatum, personal communication.

8 Lean Jidoka requires all team members
to be responsible for improving the process
(immediately) as soon as the quality of the
outcome decreases.

9 C.R. Jakobsen, personal communication.

By courtesy of BQI and c0re Magazine publish-
er - GASQ, c0re subscribers have now unique
opportunity to download the newest BQI’s study
of Agile methodologies.
To download the study for FREE, enter BQI
website, register yourself and use below code:

www.bqi.eu

Code: BQI-2010-CORE-1477

Best Quality Institute (BQI), based in Berlin and Munich is a leading institute for awards which measure and assess the quality of
enterprises and employees. Among BQI awards there are:

• Best Quality Award Agile Leadership		 • Best Quality Award Testing Leadership

BQI develops highly specialized studies and assessment models for the most diverse areas of your business. Institute is a pio-
neer in standardizing quality assessment of software and personnel.

Special gift from c0re and BQI
Best Quality Institute

09

Management

How to be a better tester
Author: Jan Sabakbasic

intermediate
advanced

people for personal growth? And if it
is how to do that? I would like to show
the way organizations can enable and
facilitate personal growth of testers to
the mutual benefit of employers and
employees.

At each level of process maturity the
goals are different. The measurements
we collect to understand the status of
maturity level goals achieved is explained
in this paper using GQM model.

Introduction - Traits of a tester

To be a good tester and to perform testing
well may mean several different things.
There are many different tasks during
testing, and these tasks may require
sometimes quite different knowledge.
In this article I will concentrate on the
role of a tester as a person responsible
for analyzing test basis, designing test
cases, implementing them, performing
and reporting test results. I will not
elaborate on managerial tasks because
they are more complicated, but some
conclusions can be generalized basing
on this material.

Skills and knowledge which testers need
can be divided into four categories. They
are:

• knowledge about testing process and
techniques

• technical knowledge

• domain knowledge

• personal traits

Much of it can be learned through
training courses (e.g. testing process,
some of domain knowledge), but some
of it comes with experience during
performing tests in projects. Still, some of
being a good tester requires possessing
certain personal qualities.

ISQTB Foundation Level syllabi list

following traits of a good tester:

• curiosity

• professional pessimism

• critical eye

• attention to detail

• good communication with development
peers

• experience on which to base error
guessing

One may argue which is more important,
hard testing knowledge or soft testing
skills. Some test managers believe they
can get anyone with potential of being
a tester (i.e. having a personality of a
tester as listed above) and make him or
her a good tester.

I will not give the answer to this question
here as this paper is addressed to these
who are already testers, and these who
want to be better at their job, and maybe
to those of us that do not feel the need
to go forward and become better and
better.

Why to be a better tester?

There is a saying that who does not go
forward falls back. The systems we are
testing and technologies we use are
day by day more complex. Computer
science is in its development stage
yet, so each year new techniques,
methodologies and tools emerge.
Testing is a set of activities that is a part
of more general project development.
Test planning always tries to match
testing tasks to project management
and production methodologies (see
V-model and W-model). If project design
and development methods go forward,
testing methodologies must proceed in
parallel.

Moreover, organizations we work

About the author:

Jan is a software quality assurance
expert. For fifteen years he has been
working on testing and quality of
software and hardware. He holds MSc in
Computer Science of Computer Science
Department at Warsaw University of
Technology. He built and managed
Quality Assurance Departments in
Matrix.pl, IMPAQ and Infovide. Currently
he works on his own consulting company
(AmberTeam) which strives to assure
peaceful sleep of CIOs and project
managers through risk measurement
and management. He is an active
promoter of the knowledge and culture
of the quality of software development.
He is a President of the Revision Board
of SJSI (Association for the Quality of
Information Systems). He possesses
ISTQB CTFL and CTAL TM certificates.

Abstract

I would like to give some thoughts about
what it means to be better tester. Who
can and should be a better tester? Why
someone may want to be still better
in his/her job. I will concentrate on
personal development as opposed to
training courses. There are some traits a
tester should posses and they cannot be
taught on courses. How to acquire and
develop those traits?

Companies always need better people,
especially now in the days of staggering
economy. Is it possible to motivate

10

Management

for are developing. Our competition
is developing as well. If we allowed
ourselves to do things the way we always
did, others would outperform us having
lower prices and tighter schedules.

These two above mentioned factors
are external to the testers. But some of
testers’ personal traits (e.g. curiosity and
critical eye) constantly motivate them to
learn and develop, to reach for more
knowledge.
Testing has been gaining more and
more visibility over last few years.
Testing community has developed new
standards and aids for testers (e.g.
ISTQB Syllabi, ISO/IEC 29119). There
are new tools that support testers, but
testers have to get to know them, try
them and learn their usefulness. This is
also a form of personal development

There are many reasons for testers to
develop. Some of them are external to
testers and some of them come from
the essence of being a tester. Both
are important to drive tester’s career
forward. And where is the will there is
the way. There are many ways to get
knowledge and develop skills. In next
chapter I examine some of them.

Development of a tester

As I stated in previous chapter all testers
need to improve themselves, need to
learn new techniques and tools. There
are many ways to do that. Most common

of them are:

• training courses

• conferences

• self development through books and
articles

• hands on experience in projects

Training courses can give you knowledge
and insight into experience of an expert
who givies a course. Training courses
may prepare you for an examination
giving certificates. Training courses
in the form of workshops help building
up skills in using tools and techniques.
Some skills such as assertiveness can
be learned effectively only through
workshops.

Equally important are other forms of
development such as conferences
that create opportunities to exchange
experience and share problems and
their solutions.

Every organization should have
personal development plans to keep
balance between project work and self
development. It is hard to tell how much
of personal time should be devoted to
development. The more work in projects
is done the greater profit it brings to
organizations in the short run. But in
the long run too little development can
cause demotivation and render work
methods obsolete. If there are no plans

and no test managers to keep an eye
on their realization, all time and attention
is devoted to current projects and none
of them to development. This brings
stagnation in well known comfortable
procedures and boredom and after
a while best people, who value their
careers begin to seek opportunities for
growth elsewhere.

While building development plans and
assigning development goals to testers
one has to keep in mind that they have
to be formulated in the right way. For
example using SMART technique:

• specific

• measurable

• ambitious

• realizable

• timely

Very good technique for defining goals
can be found also in the book “One
Minute Manager” [3].

Most important factor in giving work
and development tasks is their difficulty.
Too easy tasks are boring and do not
really bring any development. On the
other hand too difficult tasks frustrate,
demotivate and do not improve skills or
knowledge as well.

People have three zones of

11

Management

competence:

1. comfort zone

2. development zone (discomfort zone)

3. panic zone

If a tester gets tasks only from comfort
zone, he or she can execute them well
and on time. But this work becomes
boring with time and does not improve
him or her. Furthermore boring work
may be done without due attention and
a tester may overlook defects in tested
software.

Too difficult tasks may induce panic in
some people that may inhibit them and
again no development will be achieved
or work tasks will be performed
inadequately. That may raise project’s
exposure to risk.

To maintain tester’s curiosity, attention
to detail and other desirable traits,
to develop testers, they have to be
given tasks and goals that are in their
discomfort zone. These tasks should
require more than a person thinks is
safe and easy but not too much so as
not to upset a tester.

If you are a tester living and working
in comfort zone, notice that this may
be easy and pleasurable, but it is not
developing. To develop you need to
leave your comfort zone and try things
out of its bounds. See also [5] for some
motivation to do so.

Deliberate practice

In order to become a better tester it is
not sufficient to do one’s work in the best
way. To grow one must have a goal and
a plan to achieve it, and of course goal
has to be taken from discomfort zone.
Everyday exercise complementing
more formal training can help personal
development and can give new meaning
to routine tasks.

In his book [4] Geoff Colvin describes
deliberate practice, an everyday exercise
which aims at constant personal growth.
It requires dedication and patience but
assures that person who devotes time to
it will develop desired skills or traits.
Looking at chess masters, musicians
and sportsmen we can learn to practice
our skills too. Not every exercise brings

development. Such practice has to
possess a couple of important features:

• one has to intentionally strain to
develop oneself

• one has to exercise every day

• one has to regard it as most important
• it has to be hard

• it does not need to be pleasurable

There is no way to motivate people to work
hard to develop. An impulse for doing
that has to come from inner motivation.
The role of a manager of people wishing
to grow is to help them doing it within
organization and if necessary to be a
mentor to such people.

Deliberate practice can be present in
organizations but it is hard to achieve
because quarterly or yearly appraisal
rituals effectively hide actual problems
of a worker and concentrate on filling
in the forms and tactical placement in
corporate ladders and salary brackets.

To implement everyday development
practice organizations need to notice
that the best way to raise engagement
in development is to inspire and not to
command. To do so organizations have
to develop a corporate culture that allows
and promotes personal development.
Organizations should choose some of
their employees and allow them to be
mentors to others. To share experience
and to judge grow of their mentees.

Even if we do not have mentors we
can exercise personal growth through
deliberate practice. Having mentors
gives, however, better results because a
mentor can help to choose appropriate
goals and can evaluate outcome of
exercises and show their weak points.

To do deliberate practice at work one has
to take care of several crucial elements.
It has to be prepared, observed and
measured and conclusions have to be
drawn from it.

Before work

Before starting working day you have
first to examine your beliefs. You have
to believe that work and practice is
beneficial to you. That it helps you grow
and develop you career, to raise the

level of your expertise. You have also to
believe in you ability to perform the work
that lies ahead of you, believe in your
self-efficacy.

Before starting work you have to set
a goal for today. The goal has to be
SMART, and it has to lead you out of
your comfort zone into your development
zone, but not too far away into panic
zone. Remember that lazy people do not
set goals and live in their comfort zone.
Mediocre people set goals of immediate
results. And best people set goals of
personal improvement or improvement
of work methods and processes.
After you have decided what today’s
goal will be, make a plan of achieving it
through today’s tasks.

If you have a mentor, he or she may help
you to choose your goals. He may be
able to see the long term goal you try
to achieve and can align your goals with
needs of the project or organization. He
has already walked the path you are
taking and may be able to point out the
best next step for you.

During work

During executing work tasks you have
to observe yourself and methods you
use, your ways of thinking. This is called
metacognition and is a way of thinking
about thinking. This allows you to correct
and rearrange the way you are working
in order to achieve the goal you have set
in the morning.

If you have a mentor, you may work
with him or her. It is easier to observe
someone else than to observe oneself.
From his experience he may also see
more good points of your work or things
you need to improve.

After work

After work your mentor or yourself
appraises your work. You should
measure to what extent you goal
has been achieved. Appraisal and
measurement should be as accurate as
possible. You have to get to know what
you have done well and what you have
done poorly. The key to get better is to
know you deficiencies and to repeat
situations that showed them to invent
and drill better ways of dealing with
those situations.

Important factor here is to acknowledge
that all defeat has its source in you
yourself. Admitting that allows you to
set more realistic goals and to take
responsibility of you development.

Above procedure allows anybody to
simultaneously perform work tasks and
develop qualities that he or she needs.
Thanks to deliberate practice even most
boring job gets additional meaning and
a greater goal. This raises motivation to
work and to continue self development.

Deliberate practice at tester’s
work

Deliberate practice can be used during
tester’s work. Many task in software
testing produce measurable outcomes.
Many processes have corresponding
standards that can be used to judge
tester’s performance, e.g. ISO 29119 or
IEEE 829.

To be a better tester one has to get
more of what has been mentioned in
first chapter:

• knowledge about testing process and
techniques

• technical knowledge

• domain knowledge

• personal traits

Through deliberate practice you can
improve skills or get knowledge from
any of above listed groups. If you
need technical knowledge and you are
implementing automated test scripts
you may set a goal of employing into
your tests today one new feature of
automated testing tool which you are
using. In such case you should choose
an area in which the feature may be
useful, get to know the feature in details
and use it as appropriate. After the work
you may have the tests you produced
reviewed by more experienced test
automation engineer and he or she
will tell you what you did well and what
aspects you should improve.

If you need skills in using testing
techniques and you plan today to design
test cases, you may choose one testing
technique and try to design more test
cases to each test condition, even if you

have already covered them. At the end
of the day you will be able to use that
technique far better and also you will
be able to tell for which types of testing
conditions it should be applied and how.
If you need more inspiration in setting
everyday goals of personal development
you can refer to ISTQB syllabi. Both
Foundation Level and Advanced level
syllabi contain learning objectives.
Learning objectives are divided into four
levels:

• K1 – remember

• K2 – understand

• K3 – apply

• K4 – analyze

They are also structured by the chapters
of syllabi. And for example if your general
development goal is to more effectively
use reviews you may refer to chapter 3
Static techniques of Foundation Level
syllabus and chose one of learning
objectives from that chapter. For
example “Recognize software work
products that can be examined by the
different static techniques”. You can
make then a checklist for your project to
use in project planning, which will help
checking if all necessary reviews have
been planned.

If you need to work on some of you
personal qualities you may choose one
of traits of good tester and make a goal
for the present day of it. For example
if you want to cultivate professional
pessimism, you may try to think about
project and product risks in tasks you are
working on. Make a goal of performing
twenty mini risk analyses today and put
a dash on a sheet of paper for each
analysis and note how many risk items
you were able to think of.

These are examples only of many
different directions and goals you may
choose from while planning personal
development of you or your testers.
If you add to that pieces of domain
knowledge testers need to possess in
order to design and run tests in projects,
you get a vast number of opportunities
to learn.

Summary

Every tester needs to learn and to

polish his skills. There are many ways
of doing that. First of all you need to
achieve level of so called conscious
incompetence. That drives learning and
training courses can carry you from
conscious incompetence to the level of
conscious competence. In that level you
are able to perform you work, but you
simultaneously think of the way you are
doing it. This level is still in your discomfort
zone. As your experience grows, you are
growing more and more accustomed to
using skills you acquired during training
course or workshop. These skills
move more and more into your zone
of competence or more precisely you
competence zone expands to include
those new skills and techniques. When
your work hides completely into comfort
zone your personal development stops.
And at that moment you need deliberate
practice which will move you back into
conscious competence level and out of
comfort zone and allow you to grow.

In this article I showed the need of
personal development of tester from
the point of view of a tester himself
and an organization he works for. I
showed several ways of acquiring new
skills and knowledge. And I described
deliberate practice and its application
which can help sustain personal growth
on daily basis, in which all testers should
participate.

Reference

1. International Software Testing
Qualifications Board: Certified Tester
Foundation Level Syllabus
--
2. International Software Testing
Qualifications Board: Certified Tester
Advanced Level Syllabus
--
3. Blanchard K. H., Johnson S.: One
Minute Manager, William Morrow; Later
Printing edition (September 1, 1982),
ISBN 978-0688014292
--
4. Colvin G.: Talent Is Overrated:
What Really Separates World-Class
Performers from Everybody Else,
Portfolio Hardcover; 1 edition (October
16, 2008), ISBN 978-1591842248
--
5. Johnson S.: Who Moved My Cheese?:
An Amazing Way to Deal with Change
in Your Work and in Your Life, G. P.
Putnam's Sons (September 8, 1998),
ISBN 978-0399144462

12

Management

13

Management

Optimal testing tasks
management using
Critical Chain scheduling

Author: Ladislau Szilagyi

basic

intermediate
advanced

About the author:

L a d i s l a u
Szilagyi holds a
BS in Computer
S c i e n c e &
Mathemat ics,
1978, Bucharest
U n i v e r s i t y ,
Romania and
has more than 30
years of working
e x p e r i e n c e i n
IT. He worked
until 1991 at the
Research Institute for Computer Science,
Bucharest, authoring multitasking real-
time kernels and process control systems.
He was involved in software testing since
1995 and works now at Totalsoft, Romania.
His main specialized areas of consulting
and training are Quality Management,
Testing, Requirements Engineering and
Software Process Improvement. He
published several articles in the Carnegie
Mellon’s Software Engineering Institute
Repository (https://seir.sei.cmu.edu/
seir/) and several software magazines
(Testing Experience, Quality Matters,
What Is Testing), covering topics such
as CMMI, Testing, Metrics and Theory
Of Constraints. He is also a speaker at
software testing conferences (SEETEST
2008 & 2009, Testwarez 2009). He is
ISTQB certified (CTFL, CTAL) and an
active ISTQB trainer.

Contact: lszilagyi@totalsoft.ro

Abstract

The approach to project management
known as “Critical Chain” provides
mechanisms to identify and protect
what's critical from inevitable uncertainty,
and as a result, to avoid the impact of
Parkinson's law at the task level while
accounting for ‘unpleasant surprises’ at
the project level.

Some tales from a real testing
project

Some years ago, I was the test manager
for a large software project. The
project team used a RUP-like software
engineering model, handling a large
number of software documents, and
the project manager scheduled all tasks
using a Gantt chart, detailed to the level
of something like ‘half-day-task’.

I was hence constrained to use a similar
scheduling scheme, for the testing
activities, because the project manager
insisted on receiving milestone reports
from the team members. There were
only 3 milestones, including the project
delivery date.

My test team consisted of three testers,
let’s name them Ann, Basil and Colin.
The tasks were the usual ones:

• Specification review
• Quality risk analysis
• Test cases development
• Test cases review
• Test environment setup
• Test data preparation
• Integration test sessions
• System test sessions

• Acceptance test sessions

I asked everyone to provide me estimates
on their task’s effort, and I used these
estimates to build the testing project
schedule; to be honest, I remember that
I even added 20% to each estimate, as a
‘safety buffer’, to minimize the risk.

Then, I assigned the tasks to the testers
using the classical ‘critical path’ method.
They all had fixed task delivery dates,
and everybody agreed to deliver on
time. The first month passed without
any problem, the team apparently was
calm and relaxed, talking and joking all
day long. They kept me telling ‘we are in
schedule’.

When the first milestone was in about
two weeks, I witnessed a very strange
and unexpected behavior from Ann. She
suddenly changed attitude, coming to me
and asked: “…hey, listen, shall I wait a
week more for those damn’ test cases, or
what?”. I was perplexed, because I knew
that Basil and Colin were assigned to write
all the test cases and hand them over to
Ann for review, and they newer told me
that something was behind schedule. I
quickly improvised a team meeting and
learned with surprise that in the last week
all three were …waiting. Basil and Colin
practically finished one week ago the test
cases, Ann practically finished a week
ago the quality risk analysis, but they
all waited until the ‘delivery’ date. Ann
was more extrovert than Basil and Colin,
so she was the first to come to me and
complain, but unfortunately only after a
week of doing-nothing.

A month later, I noticed from the team
another apparently strange change of

Management

14

behavior. They all looked very worried,
stopped the usual small talking and
stayed until late at work. It turned out
that all three were assigned some extra-
work from the CEO (of course, with the
mandatory comment ‘don’t tell him about
this…’). And, as a logical implication, all
three were now behind schedule for the
testing tasks.

The classical scheduling
method major problems

Test managers build the schedule and
fix the deadlines from estimates of
duration required by the various tasks
that comprise the test project by doing
first a high-level estimation based on
historical data, and then by asking the
team members about their personal
tasks estimation. There are also other
effort estimation techniques, but anyway
the historical data and the personal
task estimation are often used. Testers
know that they will be held accountable
for delivering against their estimate.
Therefore, it is prudent that they include
not only the amount of time they expect
the work to take, but also some extra-time
to protect their estimation. So testing task
estimates have plenty of safety in them,
supplementing the

The test manager then uses these
estimates and builds them into a list of

dependent tasks with associated start-
dates and due-dates. It’s not unusual
that the test manager will add an extra-
buffer to the initial task duration, often
expressed as a fixed percentage (let’s
say 10% of the initial task size). Testers
plan their work around these dates and
focus on delivering their deliverables by
these dates [2,3].

But, in practice it often happens that a
tester receive some other urgent job,
regardless on his current assignment. And
he has plenty of time until the promised
date to finish the original work, which at
this point looks like a long way off due to
the safety included in the estimate. So,
in the most cases, he is easily putting
off or delaying the original work in favor
of other stuff because the due date is
out there, in a ‘safe’ future. This “urgent
job” takes precedence until he sees the
scheduled due date coming up on him.
Now the originally scheduled project task
is hot. He starts working hard to finish the
original task on-time…but, usually, it’s
too late for this.

The first problem which strikes now is
that he can't know what problems will
impact him until he starts the work. And
he started the work later than planned,
after eating up most of his ‘safety interval’
because of the other important work.
There isn't time left to recover from the
problems in time to meet the due date,

at least without heroics, burnout, or loss
of quality because of bugs that ‘escape’
unnoticed. So, this way the testing task
deadlines get hard to meet...and cascade
through the testing project, putting the
promise of the final delivery into jeopardy,
which creates new “urgent stuff” which
impacts other projects...and so on and
so forth.

The second problem is the Parkinson
law ("work always expands to fill the time
available"). Even if, by some miracle, a
tester will finish a testing task early, will
the required ‘next’ tester be available to
pick it up? Or will some other tester feel
an urgency to pick it up? The answer
is no, because everybody will strive to
‘protect’ its own ‘safety’. So, in these
circumstances, the testing project is
pretty well doomed to meet the final
target date at best, but in all likelihood
missing it, or just making it with burnout
heroics, bad testing quality or poor test
coverage. There is also the so-called
“Student syndrome” - many people will
start to fully apply themselves to a task
just at the last possible moment before
a deadline. This leads to wasting any
buffers built into individual task duration
estimates.

This all occurs due to the combination
of task due dates and realistic, prudent,
“safe” estimates. We protect our testing
project due dates by protecting testing

Management

15

task due dates with ‘safety intervals’.
Then, by a strange paradox, from the point
of view of the whole project, we waste
that safety interval due to the apparent
comfort it provides, and therefore we
put the project delivery day promise in
jeopardy.

How to solve these problems? We have
to answer the following questions:

• How can we protect the delivery date
of the whole testing project from the
‘unpleasant surprises’ and uncertainty
without nailing all the tasks to deadlines
on a calendar, which brings Parkinson
and wasted safety time into the picture?

• How can we take advantage of early
test task finishes when they can help
us to accelerate the testing project and
maybe allow us to finish it early?

• How can we manage the execution of a
testing project, if we don't have due dates
to track?

Goldratt’s Critical
Chain solution

One solution to these challenges is
the ‘Critical Chain’ approach to project
management advocated by Eliyahu
Goldratt, the father of the Theory of
Constraints, in its book Critical Chain [1].

Three things can help us to avoid
Parkinson's law:

• Build the schedule with target durations
that are enough optimistic to allow/
encourage diversion of attention.

• Get rid of task due dates.

• Charge management with the
 responsibility to protect project resources
from interruptions rather than getting
in their way w his now leads directly to
and supports the second requirement for
repealing Parkinson’s law - the elimination
of due dates.

In a testing project, there are two kinds
of resources: resources that perform
critical tasks and resources that perform
non-critical tasks. The ones we really
have to worry about in this context are
the critical chain tasks, since they most
directly determine how long the testing
project will take. We want to make sure
that critical chain resources are available
when the preceding task is done, without
relying on fixed due dates.
There are two steps required to
accomplish this:

1.Ask the resources how much of an
advance warning they need to finish up
their other work and shift to interruptible
work so that when the preceding project
task is complete, they can drop what
they're doing and pick up their critical
task.

2. Require resources to provide regular,
periodic updates of their current estimate
of the time to complete their current task.
When the estimate to complete task T1

Figure 1 – Feeding buffer and Project buffer

matches the advance warning needed
by the resource on task T2, let the T2
resource know the work is on its way and
that it should get ready to pick it up.

Compared to traditional project
management, this is different from
focusing on “delivery day” via reporting
percent of work complete to focusing
on how much time is left to accomplish
unfinished tasks.
This process puts us into a position
such that we're no longer nailed to the
calendar through due-dates, we can
move up activity as its predecessors
finish early, and we can avoid the impact
of Parkinson’s law.

But we have not solved completely the
first challenge (the part about protecting
against ‘unpleasant surprises’). We've
now got a tight schedule supported by
these resource alerts to assure that the
critical resources are available when
needed and that they can pick up the
work when testing tasks are finished
earlier than expected.
The problem is that these “50% estimates”
don't do too much to help us promise a
final due date for the project. We need to
protect the due date from variation in the
tasks, again, especially critical tasks.
Let’s try to shift the safety associated
with the critical tasks (fig.1 – tasks 3, 4
& 5, in dark blue) to the end of the chain,
protecting the project real due date from
variation in the critical chain tasks. This
concentrated aggregation of safety is
called a “project buffer. (fig.1 – the yellow
area placed after the task 5)”

Management

16

Figure 2 – Buffer management

Now let's turn to the non-critical tasks
(fig.1 – tasks 1 & 2, in light blue). Let's
assume that they're also allowed to focus
on the task at hand and pass it along
as soon as it is done - which should be
a global model if we really want to get
projects done in a timely fashion. But we
don't want to micro-manage everybody to
the degree we do the critical tasks with
the resource availability alerts. Yet we do
want to assure that, if things go wrong in
the non-critical, we don't want them to
risk the ability of the critical tasks to stay
on track.

Figure 1 – Feeding buffer and Project
buffer

The traditional approach is to start these
tasks as early as possible, and hope that
the slack or float is enough to absorb
the variability. Why not use the buffer
approach like we did with the critical chain
and the project due date? In this case,
concentrate the safety associated with
chains of non-critical tasks as a buffer
protecting the start of the critical chain
task they feed into -“feeding buffers.(fig.1
– the light yellow area placed after the
task 2)”

Note that the feeding buffers are also used
upon to deal with resource timeliness for
non-critical tasks/resources; we don't use
the “work-coming alerts” because even if
the feeding buffer is consumed, the worst
case is that the critical tasks are delayed

and maybe eat some project buffer.
The feeding, non¬critical tasks are two
buffers away from impacting the project
promise.

Also, you gain more by keeping non-
critical resources focused on the work
at hand and to assure they finish work
that can be passed on to other resources
rather than interrupt them for other non-
critical stuff.

Ok, but again, how do we know what
shape our test project is in once it gets
started, if we don't have due dates to
track?
The key is the set of feeding and project
buffers and a process known as “buffer
management” (fig 2), in 3 steps:

1. As long as there is some predetermined
proportion of the buffer remaining, all is
well.

2. If task variation consumes a buffer
by a certain amount, we raise a flag to
determine what we might need to do to if
the situation continues to deteriorate.

3. If it deteriorates past another point in
the buffer, we put those plans into effect.

Figure 2 – Buffer management

This process allows us to stay out of
the way of the test project resources if
things are on track, build a contingency

plan in something other than a crisis
atmosphere, and implement that plan
only if necessary.

Conclusions

Goldratt’s Goldratt’s ‘Critical Chain’
scheduling model is not a magic ’silver
bullet’ to guarantee that all the problems
will be solved, it’s not recommended
for all software life-cycle models (for
example, an agile project most probably
will not benefit from the use of it), but it
is a valuable asset in the test manager’s
best practices collection!

Try to use it only when confronted with
a large iterative/incremental software
project, having lots of correlated
testing tasks, where the ‘Critical Chain’
scheduling model can be used in testing
tasks scheduling in order to guarantee the
on-time delivery of the testing activities
and to optimize the testing resources
usage.

References

1. Eliyahu Goldratt – Critical Chain, North
River Press

2. Rex Black – Managing the testing
process, Wiley publishing

3. Rex Black – Critical Testing Processes,
Addison Wesley

17

Quality in Project

Engineering Productivity:
Some ways to measure it
and manage it.

Author: Tom Gilb

basic

intermediate
advanced

About the author:

Tom is the author of nine books, and
hundreds of papers on these and related
subjects. His latest book ‘Competitive
Engineering’ is a substantial definition
of requirements ideas. His ideas on
requirements are the acknowledged
basis for CMMI level 4 (quantification,
as initially developed at IBM from 1980).
Tom has guest lectured at universities
all over UK, Europe, China, India, USA,
Korea – and has been a keynote speaker
at dozens of technical conferences
internationally.

www.gilb.com, twitter: @imTomGilb

Abstract

There are often too few qualified
engineers. I am mostly referring to
product design engineers – software
engineers and systems engineers.
One reason we have too few is that we
misuse their time so badly – we waste at
least 50% of it. But when we can longer

desire or afford to solve the problem by
hiring or off-shoring to get more warm-
bodies, we need to consider getting
more productivity from the engineers
we already have. There is one great
advantage from that tactic – they already
have plenty of experience in our company!
There are several tactics to improve
productivity. They can take many years
to come to full effect, but a steady long
term improvement, and dramatic short
term improvement, should be possible.
The key idea in this paper is that we can
define our own productivity quantitatively
– and manage the improvement of it
quite systematically. Your own definition
of productivity demands several
simultaneous dimensions of productivity.
The definition of productivity also requires
substantial tailoring to your organization,
and to its current environment. I am
going to assert that the best short term
measure of engineering productivity is
agreed value (requirements) delivered;
and the best long term measure of
engineering productivity is stakeholder
benefits actually delivered.

The Engineering Productivity
Principles:

Here are some basic suggestions for
a framework for getting control over
engineering
productivity:

1. Subjective Productivity: Productivity
is someone’s subjective opinion of what
values we want to create for our critical
stakeholders.

2. Measurable Productivity: Productivity
can be defined as a setof quantified and

measurable variables.
3. Productivity Tools: Productivity can
be developed through the individual
competence and motivation, the way we
organize people, and the tools we give
them.

4. Avoid Rework: The initial attack on
productivity improvement should be
reduction of wasted effort

5. Productive Output: The next level
of attack on productivity should be to
improve the agreed value delivered to
stakeholders.

6. Infinite Improvement: Productivity
improvement can always be done: there
are no known limits.

7. Perfection Costs Infinity: Increasing
system performance towards perfection
costs far more than increasing volume of
system function.

8. Value Varies: Product attributes are
viewed and valued quite differently even
by members of the same stakeholder
group.

9. Practice Proves Productivity: You
cannot be sure how well a productivity
improvement strategy will work until you
try it in practice.

10. Productivity Dwindles: Yesterday’s
winning productivity tactic may not
continue to work as well forever.

Defining Productivity

Let me tell you what I think productivity is,
maybe even what ‘engineering’ is.

Quality in Project

18

Productivity is delivering promised value
to stakeholders.

„Deliver” means actually measurable
handed over and available to
stakeholders.

„Promised” means that clear written
agreements, are made in contacts,
requirements, documents and slides, or
clear undeniable expectations are set.

„Value” means something of perceived
use, to the stakeholder; they need it,
they want it, they are willing to sacrifice
resources to get it, they will be unhappy
if it is late or lower in power than their
expectations.

„Benefits” are the results of the perceived
value to stakeholders. Benefits are what
really happens, though time, as a result
of the engineering value delivered.

It is an open question whether systems
engineering should attempt to take some
planning responsibility for enhancing
benefits realization, or whether this is
the system recipient stakeholders that
should be responsible for planning an
environment to maximize benefits.

Someone has to take this responsibility,
and I fear that the system users with their
‘day jobs’, do not feel they are responsible
or capable. In which case an opportunity
for systems engineers, to enlarge their
conventional scope of planning, exists.

So, we can simplify and say ‘engineering
productivity’ is the ability to deliver
agreed requirements.

Figure 1

Our formal requirements, should ideally
be the ‘meeting place’ for stakeholder
values and engineering commitments.

An engineer is productive to the degree
they contribute to an engineering effort
that is successful in delivering promised
requirements, to real stakeholders, in
a timely manner (at or before agreed
deadlines).

An engineer is more efficient if they can

Figure 2

Quality in Project

19

reduce the resources needed to deliver
requirements on time to stakeholders.

Stakeholders are any people, groups of
people, types of people, or instances that
have requirements (like laws, contracts).

Engineers are technical people who, as
a team, master the arts of
• determining a necessary set of
requirements for a system,
• determining a necessary set of solutions,
and
• planning and carrying out the necessary
processes to actually delivering the
promised requirements (the value, the
potential benefits) to the stakeholders.

Figure 1 Engineers can be productive
by generating the conditions for
stakeholders to get value from the
system. The question is, does the
systems engineering responsibility stop
at the technical system? Or, should it
extend into the stakeholder domain?
Should systems engineers at least plan
(engineer) everything necessary to get
the intended value in practice? Is it ‘good
enough’ that value perception exists, but
the benefits are not finally brought in, in
practice? The next diagram adds a stage,
regarding bringing in the benefits.

Figure 2 This diagram makes the
subtle distinction between handing over
‘potential value’ systems to stakeholders,
(perhaps this is the limit of engineering
responsibility?) and, then actually
achieving the full long-term benefits
that system deployment enables the
stakeholder to do. The rectangle with
a left arrow up, is a PDSA process,
a Planguage symbol for a process in
general.

What Engineering Productivity
is not.

1. Not Zero Results: any failure to
actually deliver the value agreed, no
matter what the reason, or source of
cause, means that the engineers have
failed to be productive (even if it is not
their ‘fault’).

2. Not Specs: productivity is not the
ability to generate specifications of any
kind. Specs are perhaps a necessary
‘means’, but the ‘value’ delivered is
the key notion of real engineering
productivity.
3. Not Exceeding Value: productivity

is not exceeding agreed requirements,
if there is no value, and no agreement
with stakeholders.

4. No Golden Hammer: there is no one
tool, method, principle or policy that will
give you fullpotential productivity: there
are masses of details, and persistent
improvement, and maintenance forever,
that are necessary ingredients.

Some ways to measure
engineering productivity

Direct Measures

Value Delivered:
% Lifetime Value Actually Delivered.

This is a summary of all measured or
estimated real value delivered to real
stakeholders for a defined time period,
usually to date. This is % of plans made,
of requirement targets that were set.

Potential Value Extrapolation:
% Lifetime Benefits Estimated
achievable, under given conditions,
based on real measurement and
deployment to date.

This is our best estimate of the capability
of the system to deliver planned benefits
in the longer term, based on real
experience of some real stakeholder
deployment thus far. The set of future
conditions for reaching these estimates,
such as budgets, and access to skilled
engineers and managers, willingness
of stakeholders to continue use, market
conditions; need to be spelled out
clearly. If prudent, then steps need to
be taken. to ensure those conditions are
true, as far as we can exercise control
over them.

Indirect Measure and Indicator

Technical Capability:
% of Target-Level Improvement of
Performance Requirements that is
Measurably Delivered
	
This indicates that the technical
engineering work is succeeding. It does
not measure that the technical capability
has been converted into stakeholder
value (deployed at the stakeholder). It
could be that the technical system is not
yet deployed to stakeholders, except in
pilot versions.

Some strategies to increase
engineering productivity

Primary Strategies for Value-Delivery
Productivity

1. Measuring Value as a strategy
It is all too common, in the many
international industries I am personally
witness to, that many of the acknowledged
critical factors that determine value
are not expressed in quantified terms.
This seems to be a problem for both
management and engineering cultures.
We are taught a selection of metrics, for
accounting and engineering, but we are
not taught that all critical factors must
be dealt with quantitatively, even if we
have to invent suitable metrics. Senior
managers and engineers are not taught,
and they do not know how to quantify the
very factors they have just acknowledged
are critical to the project at hand. They
use words, but not numbers.

Examples of real, fuzzy, critical, top
level, project objectives

Technical Goals: “rock-solid robustness”,
“to dramatically scale back the time
frequently needed after the last data
is acquired to time align, depth correct,
splice, merge, recompute and/or do
whatever else is needed to generate the
desired products by semi-automating
and/or performing these activities as the
data comes in”, “to make the software
much easier to understand and use than
has been the case for previous software”,
“to provide a much more productive
software development environment than
was previously the case.”, “software
development difficulty should scale”,
“will provide a richer equipment model
that better fits modern hardware
configurations”, “Minimal down-time”,
“major improvements in data quality over
current practices wherein the job planning
process is much more haphazard.”
	
Business Systems: “Business Result
Alignment: maximize delivery speed
and client satisfaction level across the
Change the Firm Book of Work to achieve
key business goals.”, “Eliminate IT efforts
that duplicate other IT efforts.”, “Make use
of existing tools and avoid reinventing the
wheel”, “Deliver high-significance real-
time metrics on critical aspects of project
results and resources.”, “to be the world’s
premier integrated service provider” (in
our sector).”, “a much more efficient user
experience”

Quality in Project

20

We have to shift culture, to a time-
honored systems engineering notion, that
of the many project stakeholders [SEH,
references in 80 sections to stakeholder].
Each one of say 40 stakeholders will have
one, or probably more, value delivery
potentials from the project. We need to
map all significant stakeholder values,
even though they are not ‘ours’.

These values are not the same at
requirements! Stakeholder values
represent potential requirements if they
are technically possible, economically
possible and prioritized! They are, for
the moment, just stakeholder needs
and values, not committed system
requirements.

The engineers doing this will increase
their real ‘productivity’ by helping to plan
the actual delivery of those values. And
perhaps even contribute to planning
the total systems problem of delivering
real benefits on the back of the values
deployed technically.

We need to plan to help stakeholders and
inform stakeholders, and get co-operation
of many of those stakeholders, so that
they understand and commit to their
role in deriving those final benefits for
themselves, and for other stakeholders.

Example 2 a design template, partly filled out in
Planguage (Real, telecoms, about 2000). It has
collected information on defined stakeholders
that are impacted by this design. It has identified
a critical technical requirement (Interoperability)
impacted by this design. It has identified a critical
technical requirement (Interoperability) impacted
by this design. It has yet-unfilled parameters about
impact relationships, that challenge us to enrich
our understanding of this engineering artifact.
The engineer can increase their productivity by
analyzing deeper, and acting on the analytical
insights. It is not about producing more, but about
producing more potentially-fruitful insights for
engineering and managing value to stakeholders.
Source [CE], page 199.

Secondary Strategies: that will
improve our ability to deliver value.

Quantifying Performance, particularly
qualities.
Technical system qualities, are not
the same is the stakeholder value we
discussed above. The technical qualities
are the pre-requisites, or ‘drivers’, of
value. But qualities are not the value
derived finally by stakeholders.

Engineering Organization Objectives:

A special effort is underway to improve
the timeliness of Engineering Drawings.
An additional special effort is needed
to significantly improve drawing quality.
This Board establishes an Engineering
Quality Work Group (EQWG) to lead
Engineering to a breakthrough level of
quality for the future. To be competitive,
our company must greatly improve
productivity. Engineering should make
major contributions to the improvement.
The simplest is to reduce drawing
errors, which result in the AIR (After
Initial Release) change traffic that slows
down the efficiency of the manufacturing
and procurement process. Bigger
challenges are to help make CAD/CAM
a universal way of doing business within
the company, effective use of group
classification technology, and teamwork
with Manufacturing and suppliers to
develop and implement truly innovative
design concepts that lead to quality
products at lower cost. The EQWG is
expected to develop ‘end state’ concepts
and implementation plans for changes
of organization, operation, procedures,
standards and design concepts to guide
our future growth. The target of the
EQWG is breakthrough in performance,
not just ‘work harder’.
The group will phase their conceptualizing
and recommendations to be effective in
the long term and to influence the large
number of drawings now being produced
by Group 1 and Group 2 design teams.

Example 1 Real example from a 5,000-engineer
corporation (1989). Source: CE, page 71, Case
2.8 where a detailed analysis of this text is given.
In this case the Director for Productivity and
Quality for Engineering was denied about $60
million from the Board, to fund this project (which
was to buy more automation of engineering work
processes). He was quite surprised, because in
the past, this level of proposal had worked! Can
you work out the proposed value of the investment
from this?

The quoted examples are real (1989-
1998-2006-2007 vintage), and reflect
real projects where the $50 million in one
case, and $100 million (in another case)
actually spent was totally wasted, no
value delivered at all. In the last example,
the Board was smart enough to NOT
waste the money!

The major initial culprit, in my opinion,
was lack of quantification of these

management-acknowledged, top-level,
large project, objectives. At least one top
manager in each case totally agreed with
my conclusion. The root cause of this
bad practice, in my opinion, was lack of
corporate policy, regarding quantification
of top-level objectives for big projects.
There was no common-sense culture (to
make up for the lack of formal culture),
amongst the managers approving the
‘investment’, to acknowledge that the
objectives were on very shaky ground.

2. Estimating Long Term Value –
strategy
We are all familiar with the ‘business
case’. A typical business case will
probably insist that we feed it with some
monetary figure regarding long-term
savings, or additional earnings as a
result of the investment in the project
(monetary value) – the ‘benefits’.

The problem with this, is it is not ever
based on a detailed analysis of the
many stakeholders, and their value
set. It might even typically ignore all
stakeholders except ‘us’ ourselves. It
will probably focus entirely on monetary
advantages, and seriously ignore all
other advantages, even though the
other advantages may well be listed as
‘Critical Business Objectives’ (see above
examples, strategy 1).

In addition, there may be no obligation,
culture, will-power, or ability to actually
follow-up and derive the projected
benefits in practice. Last month I was
told frankly at one place I visited,
that although projects said in project
justifications, for example, they would
“save 20 employees”, they were
routinely never actually saved, and
everyone knew there were no penalties
for failing to make the saving real, when
new systems were delivered.

A respectable strategy would be to
make estimations of long-term benefits
expected for all aspects of value, for all
stakeholders of significance. We should
of course include information on the
conditions and assumptions necessary
for these benefits to be realized in
practice.

3. Focus on Delivery of Value to
Stakeholders – strategy
We have a tendency to focus on value
to our corporation; the one investing in
the project. Or we focus on value to our
main customer, paying for the project.

21

Quality in Project

Quality in Project

22

For example if a system is designed to
have a security quality of identifying 99%
of attempted system intrusions within
1.o seconds, a ‘quality level [Security
Quantification]. There is no value if the
system is not yet deployed, and if it has
no effect on the hacker activity (because
no hackers are aware of the capability,
and choose to avoid the system), or if no
hackers are caught in the act.

For another example, if a system is
designed for high usability, in order to
make it unnecessary to train people for
a week on the use of the system, but
an organization persists in delivering
the useless training in spite of this, then
no value is actually delivered to the
stakeholder. The potential is there, but
not exploited.

Now, just as the above (1. Measuring
Value as a strategy), argues that we
cannot expect to engineer the value
achievement, if the value aspects are
not defined quantitatively, the same
argument applies, for the same reasons,
at the level below stakeholder values, the
system quality levels.

System quality levels must be quantified
by engineers, and must be engineered
into existence. That is a minimum
prerequisite for enabling the system to
deliver value to stakeholders. [QQ].

Figure 3 the engineering-specification
structure of a single quality-aspect
(Repair) of a system. This quality aspect
would have no value to any stakeholder
if the system was never deployed or
released, or never had a fault needing
repair, or if repair activity were never
attempted, or if it were not attempted using
the technology designed in the system to
give this repair speed. Technical qualities
are the basis for deriving value, but they
are not to be confused with the value
(‘perceived potential benefit’) itself, or
even with the long-term benefits (‘value
delivered to stakeholders’) derived from
the quality of the system. Source: [CE,
SoM] Figure 4.3, page 115.

Evolutionary Project Management,
feedback and correction.

In complex, state of the art, multi-
stakeholder, large-scale systems it is
acknowledged [US DoD Mil Std 498, for
example] that it is impossible to know all
the right requirements at the beginning.

Figure 3

We have to learn more about, and adjust,
initial assumptions, as realities emerge.

From my perspective a major tool to
help the systems engineer dialogue
with the reality of both the technical,
political, economic and other stakeholder
environments, is that we create an
engineering process that learns. The
engineering process learns about
stakeholder values, about necessary and
possible requirements, about emerging
technology, about the real ability to
make benefits happen, and many other
uncertain variables. The engineering
process learns early, frequently, and is
narrowly focused – not distracted by
overwhelming size and complexity.

The class of project management
methods that do this are broadly known
as ‘evolutionary’ methods. These are

iterative, they are incremental; but they
have one more attribute that makes them
‘evolutionary’: feedback on each cycle,
learning, and corrective action to benefit
from the feedback and analysis. In short
they are also ‘learning’ processes.

Although it is not difficult to see this kind of
gradual learning process, in many forms,
in engineering (multiple prototypes,
multiple product versions, the long term
evolution of most technologies), current
systems engineering culture does not
take such processes for granted at
all. If anything, we have got a systems
engineering culture that largely assumes
something closer to a ‘waterfall’ model of
development [SEH]. It hardly mentions
evolutionary processes at all.

I would argue that a systems engineer
must normally use, and master an

23

Quality in Project

evolutionary feedback project mechanism
[Evo]. The fact that corporations and
institutions routinely impose a heavy
bureaucratic ‘big bang’ model, with
attendant project failures, is a sorry
comment on our present culture.

Figure 4 A process-improvement cycle:
"Understand-Select-Analyze-Plan-Do-
Check-Act" which emphasizes that the
plan must be based on the understanding
of the system and the evaluation of
the data on the system. We need to
apply these cycles better to project
management. Source: http://www.
triz-journal.com/archives/1998/12/g/
Image99.gif

One of the main conclusions Peter
Morris made, in his great book on project
management [Morris] was that there was
“no good project management method”.
He was talking about projects like the
Concorde, The Channel Tunnel, and
the Atomic Bomb (Manhattan). He was
talking about systems engineering. His
main conclusion was that if we are to
improve the project management model,
it must include much more feedback – an
evolutionary model. Systems engineering
has not yet taken his advice to heart.
Our SE culture is too slow to react to
necessities.

One of my favorite tools

Impact Estimation Tables
I believe that the productive engineer
needs another tool, which I have called
the Impact Estimation table [CE], or a
similar tool such as Quality Function
Deployment (if it is carried out with the
same quantified rigor in specification
– rare to see in [QFD] practice – but I
am told it exists). We need to be able
to reason about complex systems, and
about the value we are planning to deliver

Figure 4

Figure 5

as a result of our technical engineering.
Figure 5 The connection between design
(for example, required technical system
qualities) and Performance Goals (for
example derived stakeholder value
levels) can be both estimated, and later
measured. The estimated or achieved
value can be represented graphically,
as above (in ‘Planguage, [CE]) or on
spreadsheet tables.

We need to avoid the common one-to-
one reasoning (‘we are going to use
technology X to achieve Quality Y’) and
to understand more clearly that our
means are likely to have multiple effects
on many of our critical values. This is, of
course, good conventional engineering
(to worry about side effects) but I see too
many real projects where this is not done
systematically.

My opinion is that the use of a tool like
the Impact Estimation table, would force

the systems engineering team to consider
their systems, as broadly as we must do in
a real systems engineering environment.

Figure 6 A real US DoD Impact Estimation
table, from the author’s client, the
Persinscom (US Army, Personnel
System). Behind all tags (Customer
Service, Technology Investment) are
properly-defined requirements (quantified)
and designs. This tool, enables us to get
a better overview picture of how mutiple
technological ideas, Source CE, page
284.

Some Management Policies for
Engineering Productivity

1. Productivity is Value Delivered: SE
Productivity is ultimately measured in
terms of real benefits delivered to real
stakeholders, as enabled by stakeholder
value delivered, which is the short term

24

Quality in Project

measure of engineering productivity.

2. Total Systems Engineering: The
engineering organization is responsible for
all aspects of value delivery; if necessary
including the design of the organization
needed to continue to deliver the real
benefits in the long term.

3. Value Responsibility: specified
engineering organizational units will be
held accountable for initial and long term
planned value delivery.

4. CVO: A Chief Value Officer will oversee
all technical and management efforts on
value delivery; and report to the CEO on
the situation, using Value Accounting.

Summary

We need to develop a culture in systems
engineering, where the delivered value and
consequent benefits are considered the
primary purposes of systems engineering.
Value to stakeholders can be a primary
measure, short term, of the productivity of
systems engineering. „Delivered benefits”
is a better measure of the real productivity
of the systems engineering function.

References

[CE] Gilb, Tom, Competitive Engineering,

A Handbook For Systems Engineering,
Requirements Engineering, and Software
Engineering Using Planguage, ISBN
0750665076, 2005, Publisher: Elsevier
Butterworth-Heinemann. Sample chapters
will be found at Gilb.com.
as noted below:

[SoM] Chapter 5: Scales of Measure:

http://www.gilb.com/community/tiki-
download_file.php?fileId=26

[Evo] Chapter 10: Evolutionary
Project Management: http://www.gilb.
com/community/t iki-download_fi le.
php?fileId=77

Gilb.com [www]: www.gilb.com. our website
has a large number of free supporting
papers , slides, book manuscripts, case
studies and other artifacts which would
help the reader go into more depth.

[QQ] Quantifying Quality theme:
[QSV] Quantifying Stakeholder Values
(INCOSE 2006 paper) http://www.gilb.
com/community/t iki-download_fi le.
php?fileId=36
[H2QQ] Main QQ paper 2007 Version	
“How to Quantify Quality: Finding
Scales of Measure”. http://www.gilb.
com/community/t iki-download_fi le.
php?fileId=124. This was originally

published as a paper at INCOSE.org
conference Washington DC 2003.

[QQ Slides] http://www.gilb.com/
c o m m u n i t y / t i k i - d o w n l o a d _ f i l e .
php?fileId=131 This is a 2007 version of
the slides used to lecture on quantifying
quality, at universities and conferences,
and for clients.

[QFD] What’s Wrong with Quality Function
Deployement?

http://www.gilb.com/community/tiki-
download_file.php?fileId=119

[Security Quantification] Quantifying
Security: How to specify security
requirements in a quantified way.
Unpublished paper. Tom Gilb. See
also [SoM] above. http://www.gilb.
com/community/t iki-download_fi le.
php?fileId=40

[Morris] The Management of Projects, Peter
Morris, UMIST, ISBN: 9780727716934,
1994, Thomas Telford Ltd., 358 pp,
http://www.thomastelford.com/books/
bookshop_main.asp?ISBN=072771693X

[SEH] INCOSE Systems Engineering
Handbook v. 3.
INCOSE-TP-2003-002-03, June 2006 ,
www.INCOSE.org

25

Quality in Project

Test Process Maturity and
Related Measurement

Author: Nagaraj M Chandrashekhara

basic

intermediate
advanced

About the author:

Nagaraj is Director-
Customer Excellence,
in STAG Software
Private Ltd. He has
over twenty-five years
of experience in the
software discipline
and has worked in
all the phases of
software development life cycle out
of which sixteen years in the field of
Software Test Engineering.

He is passionate about driving process
improvement for achieving better
business results. He has delivered
lectures on Software Engineering,
Software Testing and Software
Process Improvement at many
organizations and in International
Testing Conferences. He was certified
internal auditor for ISO and part of
internal assessment team for CMM
model.

He holds an engineering degree in
Mechanical discipline from Mysore
University. He has completed diploma
in Statistical Quality Control (SQC)
from ISI. His interests are in the areas
of test design, project management,
test process improvement using TMM,
and data analysis using statistical tools.
He had submitted papers and tutorials
on different topics of his interest in
the international conferences held in
India, Singapore and Malaysia.

Contact: nagaraj@stagsoftware.com

Abstract

The organizations have moved from

“assemble testing team on need
basis” to “a focused independent
testing team” over years. It is quite
natural that the test process to run
the organization also has changed
drastically to address the entire test
life cycle process covering different
aspects of process engineering.

Organization involved in software
development normally chooses
standard models as framework to
improve their software development
life cycle process like ISO 9001, CMMI,
SPICE etc. Because of the important
role of testing in software process and
product quality, and the limitations
of existing process assessment
models, Ilene Burnstein at Illinois
Institute of Technology developed the
Testing Maturity Model. This model
helps organizations to introduce best
practices in progressive way and
assess the capability and maturity of
test process against a set of standards
goals.

The quality of measurements collected
regarding testing activities improves
over the years. This also reflects the
level of process maturity achieved.
This paper is intended to share
authors experience on journey of
improvements regarding test related
measurement collections observed in
the organization over time.

At each level of process maturity the
goals are different. The measurements
we collect to understand the status
of maturity level goals achieved is
explained in this paper using GQM
model.

Introduction

We all know, the organizations have

moved from “assemble testing
team on need basis” to “a focused
independent testing team” over years.
It is quite natural that the test process
in the organization also has changed
drastically to address the entire test
life cycle process covering different
aspects of process engineering. The
quality of measurements collected
regarding testing activities improved
over the years. This also reflects the
level of process maturity achieved.
This paper is intended to share
authors experience on journey of
improvements regarding test related
measurement collections observed in
the organization over time.

The Test Maturity Model is used as
framework to explain the growth of
maturity in measurement collection
and analysis in an organization
using TMM as model for process
improvement. The paper just
introduces on TMM model and
maturity level goals in first section.
The authors experience in process
improvement and how meaningful
measurements are recommended to
be collected are explained using Goal
Question Metrics as model in this
paper in the remaining sections.

Test Maturity Model

Test maturity model (TMM) developed
by a research group headed by Ilene
Burnstein at the Illinois Institute of
Technology. The TMM used by many
software development organizations
to assess and improve their testing
process. This model that illustrates
in stages how a testing process grow
incrementally.

The internal structure of TMM maturity
level explained in the picture below.

26

Quality in Project

Figure 1

What is good about this framework is
identification of three critical players
who play a major role in test process
improvement. They all have to work
together towards the evolution of a
quality testing process. These groups
were managers, developers/testers,
and users/clients. In TMM terminology
they are called three critical views. Each
groups view the testing process from a
different perspective that is related to their
particular goals, needs and requirements.
The manager’s view involves commitment

and support for those activities and tasks
related to improving testing process
quality. The developer/tester’s view
encompasses the technical activities
and tasks that when applied, constitute
best testing practices. The user/client
view is defined as a cooperating or
supporting view. The developers/testers
work with client/user groups on quality
related activities and tasks that concern
user oriented needs. The focus is on
soliciting client/user support, consensus,
and participation in activities such as

Goals

Level 2:
2.1 Develop Testing and Debugging Goals
and Policies
2.2 Initiate a Test Planning Process
2.3 Institutionalize basic testing techniques
and methods

Level 3:
3.1 Establish a Test Organization
3.2 Establish a technical training program
3.3 Integrate testing into the software life
cycle
3.4 Control and monitor the testing process

Characteristics

There is a clear separation between
debugging and testing phase.
It is a planned activity in project plan.
Plan starts after coding is complete.
Basic testing techniques in place.
Testing is multi-leveled.

There is an established test organization.
Testing is integrated to SDLC.
Test plan is developed, tracked and
controlled (Integrated with project plan).
Test engineers drive test process
improvement.
Users/clients attend milestone meeting.
User/clients support in developing usability
test plans.

requirement analysis, usability testing,
and acceptance test planning. At each
TMM level the three groups play specific
roles in support of the maturity goals at
the level.

TMM Levels, Goals and
Characteristics

The various levels and related goals are
summarized in a tabular form below with
observed characteristics of organization
at each level.

27

Quality in Project

Goals

Level 4:
4.1 Establish an organizationwide review
program
4.2 Establish a test measurement program
4.3 Software quality evaluation

Level 5:
5.1 Defect prevention
5.2 Quality control
5.3 Test process optimization

Characteristics

Review program is effective
Reviews are planned activity in project plan.
Measurements collection and analysis
process effective.
Quality attributes of a product are well
defined and measured.

Data from all projects are collectively
analyzed.
Critical defects types are analyzed
thoroughly.
Quality control concepts are adopted.
Right tools are inserted progressively.

Goal, Question and Metrics

Before we understand the measurements
collected at each level of test process
maturity in the organization, let us
understand the GQM model to arrive at
the measurements for all levels. This

model recommends that you have to be
a goal focused to collect measurement,
understand goals and related questions
to check the status of goals. The
measurement you collect must help
to derive metrics to answer possible
questions to check on goal status. Just

to illustrate this model let us take an
example of a typical goal in any project.

Let us assume one of the goals of a
project as “deliver project on time”. Let
us also assume that the project has 3
major milestones before final delivery to
customer treated as 4th milestone. The
obvious questions to check the status
of the above goal is are we on track? .
Normally the measurements we collect
will be
• Planned date of milestone completion
• Actual date of completion
• Total planned effort for milestone
• Effort spent for milestone

The above when we collect is just
called as data. If we compute number
of days late or extra effort spent it is a
measurement. If we compute % schedule
variance and % effort variance, which
represent the attribute of degree of late or

28

Quality in Project

early completion of milestone, are called
metrics. Compare these metrics from
one milestone to another than we know
the trend and risk of meeting final end
date. Some of the possible inferences we
can make from such metrics is “the delay
is consistently above x% and it is tough
to meet the end date and unless we take
significant corrective actions”.

Measurements seen at different
level of test process maturity

The next set of sub-sections explains
the author recommended measurements
at different TMM levels of test process
maturity. A sample questions are
explained to get advantage of these
measurements and derive a value which
explains where we stand with respect to
goals set for each maturity level by the
model.

Measurement of TMM Level 1:

There is no specific goal here in TMM
model. The characteristics of organization
where test process maturity is at this level
will be:
• Testing is a chaotic process
• Not distinguished from debugging
• Documented set of specification not
available
• Tests are developed in ad-hoc way after
coding is completed
• The objective of testing is to show that
software works

The measurement recommended for
TMM level 1 are:

Size:

• Size of code in KLOC
• Number of requirements or features
• Number of test cases developed
• Number of test cases executed

Defects:

• High, medium, low severity defects
count
• Defects/KLOC

Cost:

• Costs of the project as whole
• Cost of the testing effort

Measurements for TMM Level 2

As already mentioned in section 3 the
various goals at this maturity level are:

• Develop Testing and Debugging Goals
and Policies
• Initiate a Test Planning Process
• Institutionalize basic testing techniques
and methods

The measurements recommended for
TMM level 2 are:

Time/effort related measurement:

• Time/effort spent in test planning
• Time/effort spent in unit, integration,
system, regression testing
• Total time/effort spent in testing activities
• (Granularity in above measurements
also possible like time/effort spent in
test design for unit / integration/ system
tests)
• Number of planned test cases, unplanned
test cases
• Planned/actual degree of statement
coverage

Defects:

• Number of defects in each phase (SDLC
Phases)
• Number of defects found in each level
of testing (UT, IT, ST, UAT)
• Number of each type of defects found
• Time taken to fix and re-test each
defects type

Some sample recommended questions
to check on goal status for level 2:

• Do you see % of effort spent on testing
and debugging across all projects in
organization is improving when compared
to last year?
• What percentage of defects was logged
at each phases of software development
across projects?
• Is % of test planning effort spent in
overall effort of a project improving across
projects in the organization?
•What percentage of planned
measurements is collected in each
project?
• Does percentage of engineers trained
formally on basic techniques and tools
required for effective testing improving
every quarter in an organization?

Measurements for TMM Level 3

As already mentioned in section 3 the
various goals at this maturity level are:
• Establish a Test Organization
• Establish a technical training program
• Integrate testing into the software life
cycle

• Control and monitor the testing process

The measurements recommended for
TMM level 3 are:

Coverage related measurement:

Requirement coverage, Statement,
branch coverage

Productivity related measurement:

• Number of Test cases written / Per unit
time
• Test cases executed /Per unit time

Training related measurement:

Number of training hrs attended / year
(for all test professionals)

ROI on tools initiatives:

Total cost saved by automation/ Total tool
program cost

Defect escapes at each level of
testing:

• Unit test escape = (Total UT bugs found
in ST/ Total ST bugs)
• System test escape = (Total bugs found
in UAT / Total ST bugs)

User/clients support:

Number of Users/Clients interactions

Some sample recommended questions
to check on goal status for level 2:

• What are the percentage people in
different levels of test team?
• Is the above percentage growing
overtime?
• What is the percentage of people trained
on different topic of test engineering
across organization? (Look at various
disciplines in STEM™ 1test technology
of STAG. Visit:
www.stagsoftware.com to know more
about STEM™)

1STEM™ - STAG Test Engineering Method is
a test technology of STAG Software Private
Limited

• What percentage of defects was logged
at each phases of software development
across projects?
• What percentage of projects in the
organization test engineers were involved
from day one of the project?

29

Quality in Project

• Can you see % of defects uncovered at
each stage of SDLC across projects?
• Does the management get visibility to
the % of test effort planed VS actual spent,
productivity of test engineers, coverage
of test cases, coverage of requirement,
code coverage, types of tests planned
and covered at each review?
• What percentage of project released
with acceptable variance to schedule?
• Do we understand the ROI of tool
program initiated in the organization?
• What % of defects escaping each quality
gate? Author recommends going through
more about software cleanliness criteria
as explained in STEM™)
• Do we understand user interaction
effort as % spent against planned and
the impact of users support when really
required on quality attributes definition?

Measurements for TMM Level 4

As already mentioned in section 3 the
various goals at this maturity level are:
• Establish an organizationwide review
program
• Establish a test measurement
program
• Software quality evaluation

The measurements recommended for
TMM level 4 are:

• Number of inspection leaders available
• Number of people trained on inspection
• Size of the item inspected
• Time spent on inspection activities
• Number of defects found during
inspection
• Effort spent on measurement analysis
• Effort spent on different types of tests in
a project (quality attributes focus)

Some sample recommended questions
to check on goal status for level 4:

• Do we understand various quality
attributes defined for cleanliness of
software and What % of this we met
before release?
• What % of test effort spent on different
types of tests planned?
• What % of projects adhered to
measurement program fully in the
organization?
• What % of defects in project was
uncovered by review/inspections?
• What % of people in team trained on
formal inspection technique?
• How effective is inspection process?
(Defects found per hour of inspection
effort)

Measurements for TMM Level 5

As already mentioned in section 3 the
various goals at this maturity level are:
• Defect prevention
• Quality control
• Test process optimization

The measurements recommended for
TMM level 4 are:

• Time/Effort spent in defect causal
analysis
• Number of actions suggested
• Effort/cost for implementing action
plans
• Costs of statistical testing
• Effort/costs of training SEPG team in
process control
• Effort/costs on quantitative process
analysis
• Number of process changes
• Number of new tools introduced in the
organization

Some sample recommended questions
to check on goal status for level 5:

• Do you see defects counts are classified
under few list of types and % spread in a
project across these types are captured?

• Do we analyze root cause for critical
defects types, which impacted project?
• What percentage of people is trained
on process control techniques in the
organization?
• How many project attributes are
measured and declared as success
based on organization control charts?
• What percentage of penetration happened
in all tools introduced in the organization?

Conclusions

Test process in an organization will
mature overtime. If TMM model is used as
framework for test process improvement,
the recommended measurements in this
paper definitely will help to measure the
progress of test process maturity in the
organization. Measurement should have
a clear goal so that you get the support
from all concerned in the organization
on collections, analysis and actions to
improve test process continuously.

References:

1. Practical Software Testing By Illene
Burnstein, Springer
2. Software Metrics: By C. Ravindranath
Pandian

30

Software Engineering

Comparison of Change
Management Systems:
ClearQuest, VSTS, Redmine
and BugTracker.NET

Author: Stanislav Ogryzkovbasic

intermediate
advanced

About the author:

30 years old. Specialist
in enterprise-wide in-
formation systems,
business process re-
engineering (BPR),
quality management
(including testing).
ISTQB Certifed Tester, Foundation Level,
and a certified internal auditor of quality
management systems (ISO 9000).
Graduate of Vladimir State University,
Russia. MSc major in computer science,
PhD major in technical science. One of
the two first ISTQB Certifed Tester in
Russia.
Since 2004: Quality Assurance Person at
Inreco LAN inrecolan.com), an offshore
software development outsourcing
company located in Vladimir, Russia.
Since 2005: Quality Assurance
Manager at the same company. Since
2006: Business Process Improvement
Manager at the company. At last, since
2010, Chief Information Officer (CIO) at
Inreco LAN.
See http://stanislaw.ru/eng/author/
resume.asp for details.

Today software development industry
is impossible without using change
management systems which help to
register all changes in the software
developed or supported, to plan and

track them. Here “changes” means
different changes in graphical design,
software architecture, source code, user
experience, integration features, etc.,
particularly:

• defects, or bugs – detected
unconformity of the software towards the
requirements that must be fixed;

• enhancements, or features – new
features, properties, etc. of the software,
improving its functionality, quality and/or
usability;

• tasks – various tasks in the software
development or support project, for
example, a task of configuring source
code backup.

I do not plan to discuss the need of using
such systems in software development
practices as I consider it an obvious
fact (moreover, they are useful in other
industries). I am going to tell you about
four such systems, listed in the order of
decreasing “weight”:

• Rational ClearQuest is a part of a
mega package called Rational Suite and
is a “native” tool to apply the Rational
Unified Process (RUP) methodology;
we studied it in our university within
software development disciplines and
later evaluated it in some software
development projects for American
customers.

31

Software Engineering

• Microsoft Visual Studio Team System
(VSTS) 2008 Team Suite, also known
by the name of its part, Team System
Foundation Server (TFS), became
available to us as an independent
software vendor (ISV) who reached
the status of Microsoft Gold Certified
Partner.

• Redmine is one of free alternatives,
closer to systems with a wider functionality
– project management systems.

• BugTracker.NET is another free
alternative, much simpler than Redmine
but quite functional for small projects.

I am going to compare these systems
considering our own practice of their
usage by the following criteria:

• price;
• user interface language;
• web interface availability;
• lifecycle setup availability;
• authentication mechanisms supported;
• e-mail integration;
• reports creation availability;
• source control integration;
• user-defined fields;
• database management system (DBMS)
used.

And here is the comparison table itself
(Figure 1)

Below there are some comments on the
values in the cells of the comparison
table:

• Redmine and BugTracker.NET cost $0
because they are open source and free
software that is their advantage (TCO
minimization, further development by
the interested-in community and your
own resources) as well as their flaw (the
community can fix found defects slowly
or even ignore them while this could be
critical in case you have now your own
qualified resources).

• Redmine is the only system among the
four that has a multi-lingual user interface.
Some may say, software developers
usually working in English environment
do not really need a non-English interface
of such a system (by the way, Redmine’s
interface is not translated completely
into some languages). However, it is
important because often non-IT people
(customers, managers, etc.) become
authors of new enhancements/tasks and
sometimes even defects.

• Redmine and BugTracker.NET are web
applications originally, and nowadays for
such systems it is not only convenient but
also necessary. ClearQuest was used as
mostly a desktop application though had
a web interface originally (unfortunately,
based on Java that made impossible
saving web pages as local HTML pages).
VSTS was also used mostly a desktop
application (Team Explorer in Visual
Studio) but as a third-party web interface
appeared (TeamPlain, later bought by
Microsoft and renamed into VSTS Web
Access) it became more popular.
• Lifecycle setup feature (when a special
matrix define all possible transitions
from one state to another for all roles)

allows to reach better manageability and
control over access rights. However, in
small, self-organized teams it is enough
to have a possibility to turn any state into
any other one (of course, if the current
role is given write permissions) as it is
done in BugTracker.NET.

• Let all fans of Linux-like operating systems
(non-Microsoft ones) put shame on me
but I consider Windows authentication
(Windows Active Directory, WAD) as a
good and convenient thing, especially
remembering that Windows clients and
domains are still dominating in the world.
For example, Redmine is described as
supporting WAD authentication but it was
not easy to make it working. Of course, in
the ideal case we must talk about more
general LDAP authentication, however, it
definitely must be better than having a
system’s own user database (“one more
username and password to remember”).

• E-mail notifications essentially
decrease the response time of all team
members and improve the efficiency of
each member individually and the team
as a whole. The best implementation
of this feature belongs to ClearQuest
where the detailed notification scheme
can be set, as well as notification
letter templates. BugTracker.NET has
a good implementation because you
can subscribe to all needed changes,
and though the fixed letter format is
redundant it contains whatever you may
think of. VSTS and Redmine’s e-mail
notifications are satisfactory. The latter
has a mysterious notification scheme we
still have not understood clearly. VSTS

Figure 1

Software Engineering

32

has a poor built-in notification mechanism
(a little bit improved by TeamPlain), and
a fixed and poor notification letter format;
however, everything becomes much
better if you use the accompanying web
interface called TeamAlerts.

• A sort of reporting (including search
results and saved queries) presents in
all of the compared systems (though I
was complained of the constraints of
Redmine’s built-in reporting). Thanks
to web interface there is a capability to
save reporting results as local HTML
pages in almost all systems (except
ClearQuest which web interface is built
on “unsavable” Java applets). “Exotic”
reporting featured include: Remine’s
Atom (RSS) channels, and the ability
to create agile custom reports by SQL
Server Reporting Services directly
connected to VSTS’ database.

• Though source control integration
is a doubtful advantage in a general
case (particularly, when a change
management system is accessible from
the outside and is used by clients and
customers), it is quite convenient for

software developers (regarding linking
recorded changes to source code
versions and changes). Probably the
most widespread source control system
is Subversion (SVN) – that is why it is
by default supported in Redmine and
BugTracker.NET. However, when we
used VSTS in one of our projects, we
succeeded in integrating with Subversion
as well. Meanwhile, ClearQuest insists
on using its own (Rational) source control
system, ClearCase.

• All the described systems have the
ability to add your own (custom) fields to
artifacts (we did not used them practically
only in BugTracker.NET). Known
restrictions include: Redmine does not
allow arithmetic operations over custom
fields (at least, without developing
plugins); BugTracker.NET allows only 3
custom fields that look like drop-down
lists with predifined values.

• The used database defines the
infrastructural convenience (some
database server may already be used
in your intranet, while another may
not) and particularly the total cost

(Total Cost of Ownership, TCO) of the
change management system (because
proprietary database servers may
cost much more that the system itself,
especially if it is free). The leader by the
number of supported database servers
is ClearQuest; practically we used only
SQL Server among the listed. By the
way, SQL Server is the most popular
among all database servers supported by
the four change management systems.
VSTS is “hard-coded” to use the “heavy”
SQL Server while BugTracker.NET, as
far as I know, can work with the free SQL
Server Express. Redmine is the leader
by the number of free database servers
supported.

That’s all folks! Didn’t you expect I would
tell you the global conclusion? :-) No, the
conclusion is quite simple: everything
depends on the context, i. e. the choice
depends on the specific tasks, team
members and, of course, the budget!..
Although I mentioned the budget only
now, in fact in most cases it defines the
selection of a system (by the way, not
only a change management system).

Software Engineering

33

Product Qualities
Approach, Agile Style

Author: Ryan Shriver

basic

intermediate
advanced

About the author:

Ryan Shriver is a Managing Consultant
with Dominion Digital, a Virginia-based
process and technology-consulting
firm. Based in Richmond, he leads the
IT Performance Improvement Solution
which includes Agile Adoption, Agile
Engineering, IT Process Improvement
and IT Services Management. With a
background in systems architecture
and large-scale agile development,
Ryan currently focuses on measurable
business value and systems engineering.
He writes and speaks on these topics in
the US and Europe, posting his current
thoughts at theagileengineer.com.
Ryan can be reached at
rshriver@dominiondigital.com

Introduction

In many agile organizations, the
product owner is responsible for
setting the team’s priorities through the
product backlog. Whether they want
enhancements to in-house systems
or shrink-wrapped products, product
owners get input from customers and
stakeholders to create product backlogs
of prioritized features (or user stories).
These backlogs contain functionality
that can be estimated by developers
and planned for releases.

While there’s nothing wrong with this
approach of functions-first planning, I
have come to believe it’s short-sighted
in that it doesn’t place product qualities
on equal pairing with functions.
Currently in the agile community,
there’s a tendency to focus too quickly
on user-centric functionality instead of
product qualities that can deliver real
stakeholder value, often very quickly.
Product owners who understand and

leverage product qualities cannot only
delight customers, but also help them
achieve their organization’s business
objectives.

This article provides a how-to for
progressive change agents interested
in delivering products that generate
measurable business value for their
customers and stakeholders. You’ll
learn how product qualities differ from
functions, how to identify the right ones,
measure them and use improvements
to drive business results. Along the
way, I’ll demonstrate how to integrate
an agile development processes such
as Scrum.
What are Product Qualities?

Whereas functions describe what a
product does, product qualities describe
how well the product performs. This
can be along an array of technical and
business dimensions.

• Technical dimensions refer to how
well the system performs, often referred
to as “non-functional requirements”.
Common ones include availability,
response time, throughput, storage
capacity, security, maintainability and
accuracy.

• Business dimensions refer to how well
value is delivered to the stakeholders-
-the business results of the product.
This includes market-facing product
qualities important to paying customers
as well as those related to operational
objectives important to business
sponsors.

How long does it take to record a
business event? How much training
is required for new hires? How much
will our efficiency improve with your
product? This article primarily explores
the business dimensions, but the

concepts are equally applicable to both,
as you’ll see.

Why are they important?

In crowded marketplaces where
competitors have almost identical
functions, products that perform at
higher quality levels differentiate
themselves from competitors. They
also tend to be sold based upon their
value propositions rather than viewed
as a commodity, thus resulting in higher
profit margins for the seller. Performing
at higher-quality levels also has the
benefit of being recognized as a leader
in your industry, something that can
only help sales.

For software, desired product qualities
are commonly financially driven:
increase revenues and reduce costs.
Yet some product qualities can also
have non-financial objectives such as
customer satisfaction, net promoter
score and team morale. Often, these
nonfinancial objectives are important
leading indicators of future financial
results and are thusly important to
consider.

One organization that puts product
qualities forefront in their product
development approach is Confirmit.
They sell marketing research software
and report their products-focused
approach is one of their keys to success.
Another organization that markets
using product qualities is Unica, the
marketing software vendor. While I’ve
never used their products, I do think
they market quite well using product
qualities aligned with their customer’s
needs. These include generating
higher sales, retaining more customers
and reducing operating costs. Notice
these product qualities aren’t features

34

Software Engineering

or functions, they are the business
objectives of their customer: marketing
department executives.

Here’s a graphic from their website on
the value proposition of their products:

Unica must do well enough with their
approach to marketing. Gartner has it at
the top of their magic quadrant for multi-
channel campaign management, ahead
of SAS, Teradata, Oracle-Siebel and
other industry leaders.

Identifying the Right Product
Qualities

So how do we identify the right product
qualities? While I don’t believe there’s a
single right way for everyone, I’ve found
the following recipe works well for me.
I encourage you to explore what works
best for you:

1. Identify the Product Stakeholders.
Pair up with a partner and identify all
the possible product stakeholders you
can think of. Cast a wide net and identify
anyone who is impacted by the product.
Often the objectives of your stakeholders
make good product qualities! Key
stakeholder types include:

• Customer – purchases your product,
• Business Sponsor – funds development
of the product
• User – various roles, uses your product
to accomplish a task
• Operations – provides infrastructure and
servicing
• Trainers – trains new users on your
product

2. Identify the Product Qualities.
Organize meetings with the individual
stakeholders to learn about their impact
on the product.

Come prepared with a set of draft product
qualities and center the discussions on
the important aspects of the product to
them. I’ve found good questions that help
reveal product qualities include:
• What are the reasons customers
purchase your product?
• What are your customer’s objectives
and how does your product help them
achieve these?
• What would it mean to you personally,
the organization and your customers if
<insert product quality> improved?

3. Build Consensus. Organize a workshop
and present the key stakeholders the
information you’ve gathered. Encourage
candid discussion, but work toward
getting consensus on three things:
• Highest priority stakeholder to serve
first
• Highest priority product qualities to
improve first
• Available budget of time and money for
next release
Be efficient with stakeholder’s time but
also flexible to explore certain areas
for deeper discussions. The goal is to
get consensus to the highest priority
product qualities for improvement next-
-not forever. There will be time to re-
prioritize later based upon feedback;
all we’re looking for is a starting place
for improvement. Ideally we prioritize
all the product qualities, but if that’s not
possible, identifying the most important
one is better than none at all.

You’ll also want to do this same exercise
with the technical leads for system
qualities such as availability and security.
The discussions should be around design
ideas necessary to avoid the constraint
levels--and ideally hit the target levels
within the budgeted resources. If this
cannot be done, the technical team’s
responsibility is to come back with
alternative target or constraint levels that
are achievable in budget, and use this
for further stakeholder education and
discussion. Depending on your resources,
you can do this sequentially or in parallel
to identifying product qualities.

These prioritized product qualities can
go into your results backlog and serve
as input into your agile release planning
process. As to estimating how much these

products will improve in the next release,
we need to learn how to measure our
product qualities.

Measurable Product Qualities

While there’s value in simply identifying
and prioritizing the product qualities, the
primary goal is to measure them. Why?
Tom Gilb says it best:

“The fact that we can set numeric
objectives, and track them, is powerful;
but in fact is not the main point. The main
purpose of quantification is to force us to
think deeply, and debate exactly, what we
mean; so that others, later, cannot fail to
understand us.”

Defining measurable levels of
improvement to product qualities forces us
to have open and honest discussion with
stakeholders. This ensures expectations
are aligned with how much better, faster,
quicker or improved the new release will
be while working within the resources -
or else what additional resources are
necessary to reach the desired levels.

I prefer to define product qualities with
the following minimum attributes:
• Name – Brief unique identifier
• Scale – What’s measured (units)
• Meter – How it’s measured (method)
• Targets – Levels aiming to achieve
• Constraints – Levels trying to avoid
• Benchmark – Current or past perfor-
mance levels
In order to fill in the details for the highest
priority system qualities, I use a similar
approach to before. Working with my
partner, we create a draft set based on
our working knowledge and then validate
and fill in the gaps with stakeholders
offline. We then gather stakeholders
together again to present the information
back and get consensus on each
attribute. Depending on your project,
you may find it more efficient to do a
single workshop to accomplish all of
this. The method used to gather the
product qualities isn’t as important as
ensuring the information is complete and
that consensus is reached amongst key
stakeholders.

The following figures illustrate an example
product company seeking to increase
market share, monetary donations and
volunteer time donations. Below are the
product qualities most important to the
business sponsors.

35

Software Engineering

Figure 1 Product Qualities

Figure 2 With Scale and Meter added

Figure 3 Completed with Target, Constraint and Benchmark

36

Software Engineering

Let’s look at an example system quality using the same attributes:

Hopefully you can see from these
examples that product qualities can be
defined simply and succinctly. (In my
experience, three product qualities can fit
on one PowerPoint slide and up to 10 on
a piece of paper!)

Planning and Reporting with
Product Qualities

Now that we’ve quantified our product
qualities, they can be integrated into
planning and reporting activities such as:

Balanced Scorecard – For the
executives, integrating product qualities
reporting into the scorecards can clearly
communicate progress toward targets
on the highest priority product qualities
(including what resources were used
to achieve these results). Figure 3

above shows one visual representation
of progress toward targets useful for
reporting to executives (but often text
is the simplest and easiest means to
communicate results).

Results Backlog – In my recent article,
I discussed product owners using a
companion to the Scrum product backlog
called a results backlog. The idea was
to create an artifact to manage and
prioritize business objectives so the
actual business results, in addition to
the product features, could be managed.
The results backlog concept applies
to the product and system qualities as
well because both measure ends, not
means.

Release Planning – For the product
owner, agile coach and the team, as you
evaluate each new proposed feature

during release planning, ask yourself:
• Which of our highest priority product
qualities will this feature improve?
• Will this feature alone get us to our
target performance level or do we need
to consider additional or alternative
features, too?
• What percentage of our resources (time
and money) will it take to implement this
feature (and what’s remaining to improve
other quality levels)?

Although these questions can work at the
user-story level, I find it’s helpful to work
at the feature level first -before breaking
the feature down into user stories. If
a feature has positive impacts on the
product qualities, then the component
user stories should as well.

Value Decisions– Sometimes referred
to as an impact estimation table, a

Figure 4 Value Decision Table

37

Software Engineering

value decision table helps make informed
decisions by assessing how means (such
as technical design ideas, features or
projects) impact ends (such as product
qualities or business objectives) using
some percentage of the budgeted
resources (see Figure 4). The result is
a benefit-to-cost ratio that indicates the
“bang for the buck” delivered. In addition,
by summing the impacts we can see
the total impacts if all design ideas were
implemented.

For an example of how this can be
integrated with Scrum, see my article
Measurable Value with Agile.

Deliver, Review, Adjust and
Repeat

While much of this article has been about
planning, there’s still execution that must
excel in order to achieve results. While I
don’t overlook this aspect, I have learned
that well-coached agile teams can start
delivering software on a frequent basis
relatively quickly. While I know from first-
hand experience that software delivery is

challenging in its own right, I’ve learned
that most agile organizations learn how to
do the thing right early on but can struggle
with knowing how to do the right thing for
years!

It is important to review progress toward
goals at key milestones such as each
release or monthly or quarterly meetings.
Pay special attention to the resources
necessary to reach the performance
levels. Does this reveal a new insight?
Does this set (or reset) expectations
on what’s realistically achievable in the
future? If the technical team was over
confident the last time, now might be the
time to lower target levels or increase
budget in order to reach target levels.
These are all topics ideal for discussion.
Remember: The goal is to continually
improve and adjust as you go, reviewing
at the right times to make informed
decisions.

How this works in one particular
organization will vary from another, but
the important point is to do it repeatedly in
order to gain the benefits of learning and
continuous improvement.

Summary

Today we’ve learned what product
qualities are, why they are important and
how to identify, prioritize and quantifying
them succinctly. We’ve learned how to
make better-informed decisions with
numbers and communicate results to
stakeholders.
Together, these techniques form the
basis of a product qualities approach to
development that can be integrated with
agile development teams. This approach
can help your agile teams focus on what’s
most important to the stakeholders using
clear terms and numbers everyone
understands. The result is a win-win:
Stakeholders get measurable results
on their highest priorities and the team
gets the satisfaction to knowing they are
making a real difference.

Reference

The URL for this article is: http://www.
gantthead.com/article.cfm?ID=254127
Copyright © 2010 gantthead.com All
rights reserved.

38

Software Engineering

What’s fundamentally
wrong?
Improving our approach towards capturing
value in requirements specification

Author: Tom Gilb and Lindsay Brodie

basic

intermediate
advanced

About the authors:

Tom is the author
of nine books, and
hundreds of papers
on these and related
subjects. His latest
book ‘Competitive
Engineering’ is a
substantial definition
of requirements ideas. His ideas on
requirements are the acknowledged
basis for CMMI level 4 (quantification,
as initially developed at IBM from 1980).
Tom has guest lectured at universities
all over UK, Europe, China, India, USA,
Korea – and has been a keynote speaker
at dozens of technical conferences
internationally.

www.gilb.com, twitter: @imTomGilb

Lindsey Brodie is
currently carrying
out research on
prioritization of
stakeholder value,
and teaching part-
time at Middlesex
University. She
has an MSc in
Information Systems Design from
Kingston Polytechnic. Her first degree
was Joint Honours Physics and Chemistry
from King’s College, London University.
Lindsey worked in industry for many
years, mainly for ICL. Initially, Lindsey
worked on project teams on customer sites
(including the Inland Revenue, Barclays
Bank, and J. Sainsbury’s) providing

technical support and developing
customised software for operations. From
there, she progressed to product support
of mainframe operating systems and
data management software: databases,
data dictionary and 4th generation
applications. Having completed her
Masters, she transferred to systems
development - writing feasibility studies
and user requirements specifications,
before working in corporate IT strategy
and business process re-engineering.

Lindsey has collaborated with Tom
Gilb and edited his book, “Competitive
Engineering”. She has also co-authored
a student textbook, “Successful IT
Projects” with Darren Dalcher (National
Centre for Project Management). She is
a member of the BCS and a Chartered IT
Practitioner (CITP).

Abstract

We are all aware that many of our IT
projects fail and disappoint: the poor state
of requirements practice is frequently
stated as a contributing factor. This article
proposes a fundamental cause is that we
think like programmers, not engineers and
managers. We fail to concentrate on value
delivery, and instead focus on functions,
on use-cases and on code delivery. Our
requirements specification practices fail
to adequately address capturing value-
related information. Compounding this
problem, senior management is not
taking its responsibility to make things
better: managers are not effectively
communicating about value and

demanding value delivery. This article
outlines some practical suggestions
aimed at tackling these problems and
improving the quality of requirements
specification.

Keywords: Requirements; Value Delivery;
Requirements Definition; Requirements
Specification

Introduction

We know many of our IT projects fail
and disappoint, and that the overall
picture is not dramatically improving [1]
[2]. We also know that the poor state
of requirements practice is frequently
stated as one of the contributing failure
factors [3] [4]. However, maybe a more
fundamental cause can be proposed? A
cause, which to date has received little
recognition, and that certainly fails to
be addressed by many well known and
widely taught methods. What is this
fundamental cause? In a nutshell: that
we think like programmers, and not as
engineers and managers. In other words,
we do not concentrate on value delivery,
but instead focus on functions, on use
cases and on code delivery. As a result,
we pay too little attention to capturing
value and value-related information in
our requirements specifications. We fail
to capture the information that allows
us to adequately consider priorities,
and engineer and manage stakeholder-
valued solutions.

This article outlines some practical
suggestions aimed at tackling these
problems and improving the quality of
requirements specification. It focuses on
‘raising the bar’ for communicating about

39

Software Engineering

value within our requirements. Of course,
there is much still to be learnt about
specifying value, but we can make a start
– and achieve substantial improvement
in IT project delivery – by applying what
is already known to be good practice.

Note there is little that is new in what
follows, and much of what is said can
be simply regarded as commonsense.
However, since IT projects continue not
to grasp the significance of the approach
advocated, and as there are people who
have yet to encounter this way of thinking,
it is worth repeating!

Definition of Value

The whole point of a project is achieving
‘realized value’ (also known as ‘benefits’),
for the stakeholders: it is not the defined
functionality, and not the user stories
that actually count. Value can be defined
as ‘the benefit we think we get from
something’ [5, page 435]. See Figure 1.

Notice the subtle distinction between
initially perceived value (‘I think that
would be useful’), and realized value:
effective and factual value (‘this was in
practice more valuable than we thought
it would be, because …’). Realized value
has dependencies on the stakeholders
actually utilizing a project’s deliverables.

The issue with much of the conventional
requirements thinking is that it is not
closely enough coupled with ‘value’.
IT business analysts frequently fail
to gather the information supporting
a more precise understanding and/
or the calculation of value. Moreover,
the business people when stating their
requirements frequently fail to justify them
using value. The danger if requirements
are not closely tied to value is that we
lack the basic information allowing us to
engineer and prioritize implementation to
achieve value delivery, and we risk failure
to deliver the required expected value,
even if the ‘requirements’ are satisfied.

It is worth pointing out that ‘value’ is multi-
dimensional. A given requirement can
have financial value, environmental value,
competitive advantage value, architectural
value, as well as many other dimensions
of value. Certainly value requires much
more explicit definition than the priority
groups used by MoSCoW (‘Must Have’,
‘Should Have’, ‘Could Have’, and ‘Would
like to Have/Won’t Have This Time’) [6]

Figure 1 Value can be delivered gradually to stakeholders. Different stake-
holders will perceive different value.

or by the Planning Game (‘Essential’,
‘Less Essential’ and ‘Nice To Have’) [7]
for prioritizing requirements. Further,
for an IT project, engineering ‘value’
also involves consideration of not just
the requirements, but also the optional
designs and the resources available:
tradeoffs are needed. However, these
are topics for future articles, this article
focuses on the initial improvements
needed in requirements specification to
start to move towards value thinking.

Definition of Requirement

Do we all have a shared notion of what
a ‘requirement’ is? This is another of our
problems. Everybody has an opinion,
and many of the opinions about the
meaning of the concept ‘requirement’ are
at variance: few of the popular definitions
are correct or useful - especially when
you consider the concept of ‘value’
alongside them. We have decided to

Figure 2 Example of Planguage requirements concepts

define a requirement as a “stakeholder-
valued end state”. You possibly will not
accept, or use this definition yet, but we
have chosen it to emphasize the ‘point’ of
IT systems engineering.

In previous work, we have identified, and
defined a large number of requirement
concepts [5, see Glossary, pages 321-
438]. A sample of these concepts is given
in Figure 2. You can use these concepts
and the notion of a “stakeholder-valued
end state” to re-examine your current
requirements specifications. In the rest
of this article, we provide more detailed
discussion about some of the key
points (the “key principles”) you should
consider.

The Key Principles

The key principles are summarized
in Figure 3. Let’s now examine these
principles in more detail.

40

Software Engineering

Note, unless otherwise specified, further
details on all aspects of Planguage (a
planning language developed by one
of the authors, Tom Gilb) can be found
in [5].

Ten Key Principles for
Successful Requirements

1. Understand the top level critical
objectives

2. Think stakeholders: not just users
and customers!

3. Focus on the required system
quality, not just its functionality

4. Quantify quality requirements as a
basis for software engineering

5. Don’t mix ends and means

6. Capture explicit information about
value

7. Ensure there is ‘rich specification’:
requirement specifications need
far more information than the
requirement itself!

8. Carry out specification quality
control (SQC)

9. Consider the total lifecycle and
apply systems-thinking - not just a
focus on software

10. Recognize that requirements
change: use feedback and update
requirements as necessary

Figure 3 Ten Key Principles for
Successful Requirements

Figure 4 Example of Initial Weak
Top Level Critical Objectives

Example of Initial Weak
Top-Level Critical Objectives

1. Central to the corporation’s
business strategy is to be the world’s
premier integrated <domain> service
provider

2. Will provide a much more efficient
user experience

3. Dramatically scale back the time
frequently needed after the last
data is acquired to time align, depth
correct, splice, merge, recomputed
and/or do whatever else is needed to
generate the desired products

4. Make the system much easier to
understand and use than has been
the case with the previous system

5. A primary goal is to provide a much
more productive system development
environment then was previously the
case

6. Will provide a richer set of functionality
for supporting next generation logging
tools and applications

7. Robustness is an essential system
requirement

8. Major improvements in data quality
over current practices

Principle 1. Understand the
top-level critical objectives

The ‘worst requirement sin of all’ is found
in almost all the IT projects we look at,
and this applies internationally. Time and
again, the high-level requirements – also
known as the top-level critical objectives
(the ones that fund the project), are
vaguely stated, and ignored by the project
team. Such requirements frequently
look like the example given in Figure 4
(which has been slightly edited to retain
anonymity). These requirements are for
a real project that ran for eight years

and cost over 100 million US dollars.
The project failed to deliver any of them.
However, the main problem is that these
are not top-level critical objectives: they
fail to explain in sufficient detail what
the business is trying to achieve: there
are no real pointers to indicate the
business aims and priorities. There are
additional problems as well that will be
discussed further later (such as lack of
quantification, mixing optional designs
into the requirements, and insufficient

background description).
Management at the CEO, CTO and CIO
level did not take the trouble to clarify
these critical objectives. In fact, the CIO
told me that the CEO actively rejected
the idea of clarification! So management
lost control of the project at the very

beginning. Further, none of the technical
‘experts’ reacted to the situation. They
happily spent $100 million on all the
many suggested architecture solutions
that were mixed in with the objectives.

It actually took less than an hour to rewrite
one of these objectives, “Robustness”,
so that it was clear, measurable, and
quantified (see later). So in one day’s
work the project could have clarified the
objectives, and perhaps avoided some of
the eight years of wasted time and effort.

Principle 2. Think stakeholders:
not just users and customers!

Too many requirements specifications
limit their scope to being too narrowly
focused on user or customer needs. The
broader area of stakeholder needs and
values should be considered, where a
‘stakeholder’ is anyone or anything that
has an interest in the system [5, page
420]. It is not just the users and customers
that must be considered: IT development,
IT maintenance, senior management,
operational management, regulators,
government, as well as other stakeholders
can matter. The different stakeholders
will have different viewpoints on the
requirements and their associated value.
Further, the stakeholders will be “experts”
in different areas of the requirements.
These different viewpoints will potentially
lead to differences in opinion over the
implementation priorities.

Principle 3. Focus on the
required system quality, not
just its functionality

Far too much attention is paid to what
the system must do (function) and
far too little attention is given to how
well it should do it (qualities). Many
requirements specifications consist of
detailed explanation of the functionality
with only brief description of the required
system quality. This is in spite of the fact
that quality improvements tend to be the
major drivers for new projects.

In contrast, here’s an example, the
Confirmit case study [8], where the focus
of the project was not on functionality,
but on driving up the system quality.
By focusing on the “Usability” and
“Performance” quality requirements
the project achieved a great deal! See
Table 1.

41

Software Engineering

Description of requirement/work task

Usability.Productivity: Time for the system to generate a survey

Usability.Productivity: Time to set up a typical market research report

Usability.Productivity: Time to grant a set of end-users access to a report set and
distribute report login information

Usability.Intuitiveness: The time in minutes it takes a medium-experienced
programmer to define a complete and correct data transfer definition with Confirmit
Web Services without any user documentation or any other aid

Performance.Runtime.Concurrency: Maximum number of simultaneous respondents
executing a survey with a click rate of 20 sec and a response time < 500ms given a
defined [Survey Complexity] and a defined [Server Configuration, Typical]

Past

7200 sec

65 min

80 min

15 min

250 users

Current Status

15 sec

20 min

5 min

5 min

6000

Table 1 Extract from Confirmit Case Study [8]

Figure 5

By system quality we mean all the “-ilities”
and other qualities that a system can
express. Some system developers limit
system quality to referring to bug levels
in code. However, a broader definition
should be used. System qualities include
availability, usability, portability, and
any other quality that a stakeholder
is interested in, like intuitiveness or
robustness. See Figure 5, which shows a
set of quality requirements. It also shows
the notion that resources are “input” or
used by a function, which in turn “outputs”
or expresses system qualities. Sometimes
the system qualities are mis-termed
“non-functional requirements (NFRs)”,
but as can be seen in this figure, the
system qualities are completely linked to
the system functionality. In fact, different
parts of the system functionality are likely
to require different system qualities.
Figure 5 A way of visualizing qualities in

relation to function and cost. Qualities
and costs are scalar variables, so we
can define scales of measure in order
to discuss them numerically. The arrows
on the scale arrows represent interesting
points, such as the requirement levels.
The requirement is not ‘security’ as such,
but a defined, and testable degree of
security [5, page 163]

Principle 4. Quantify quality
requirements as a basis for
software engineering

Frequently we fail to practice “software
engineering” in the sense of real
engineering as described by engineering
professors, like Koen [9]. All too often
quality requirements specifications
consist merely of words. No numbers,
just nice sounding words; good enough

to fool managers into spending millions
for nothing (for example, “a much more
efficient user experience”).
We seem to almost totally avoid the
practice of quantifying qualities. Yet we
need quantification in order to make the
quality requirements clearly understood,
and also to lay the basis for measuring
and tracking our progress in improvement
towards meeting them. Further, it is the
quantification that is the key to a better
understanding of cost and value –
different levels of quality have different
associated cost and value.

The key idea for quantification is to define,
or reuse a definition, of a scale of measure.
For example, for a quality “Intuitiveness”,
a sub-component of “Usability”:
To give some explanation of the key
quantification features in Figure 6:

42

Software Engineering

Usability.Intuitiveness:

Type: Marketing Product Quality Re-
quirement.
Ambition: Any potential user, any
age, can immediately discover and
correctly use all functions of the
product, without training, help from
friends, or external documentation.
Scale: % chance that defined [User]
can successfully complete defined
[Tasks] <immediately> with no
external help.
Meter: Consumer reports tests all
tasks for all defined user types, and
gives public report.
Goal [Market = USA, User = Seniors,
Product = New Version, Task = Photo
Tasks Set, When = 2012]: 80% ±10%
<- Draft Marketing Plan.

Figure 6 A simple example of
quantifying a quality requirement,
‘Intuitiveness’.

such quantification - especially for quality
requirements. IT projects already quantify
time, cost,, response time, burn rate, and
bug density – but there is much more to
achieve system engineering!

Here is another example of quantification
(see Figure 7). It is the initial stage of the
rewrite of Robustness from the Figure
4 example. First we determined that
Robustness is complex and composed
of many different attributes, such as
Testability.

Figure 7 Definition of a complex
quality requirement, Robustness

Robustness:

Type: Complex Product Quality Re-
quirement.
Includes: {Software Downtime,
Restore Speed, Testability, Fault
Prevention Capability, Fault Isolation
Capability, Fault Analysis Capability,
Hardware Debugging Capability}.

1. Ambition is a high-level summary of the
requirement. One that is easy to agree to,
and understand roughly.

2. Scale is the formal definition of
our chosen scale of measure. The
parameters [User] and [Task] allow us to
generalize here, while becoming more
specific in detail below (see later). They
also encourage and permit the reuse of
the Scale, as a sort of ‘pattern’.

3. Meter provides a defined measuring
process. There can be more than one for
different occasions.

4. Goal is one of many possible
requirement levels (see earlier detail in
Figure 2 for some others: Stretch, Wish,
Fail and Survival). We are defining a
stakeholder-valued future state (for
example: 80% ± 10%).

One stakeholder is ‘USA Seniors’. The
future is 2012. The requirement level
type, Goal, is defined as a very high
priority, budgeted promise of delivery. It is
of higher priority than a Stretch or Wish
level. Note other priorities may conflict
and prevent this particular requirement
from being delivered in practice.

If you know the conventional state of
requirements methods, then you will
now, from this example alone, begin to
appreciate the difference proposed by

Then we defined Testability in more detail
(see Figure 8).

Testability:

Type: Software Quality Requirement.
Version: Oct 20, 2006.
Status: Draft.
Stakeholder: {Operator, Tester}.
Ambition: Rapid duration automatic
testing of <critical complex tests>
with extreme operator setup and
initiation.
Scale: The duration of a defined
[Volume] of testing or a defined [Type
of Testing] by a defined [Skill Level]
of system operator under defined
[Operating Conditions].
Goal [All Customer Use, Volume
= 1,000,000 data items, Type of
Testing = WireXXXX vs. DXX, Skill
Level = First Time Novice, Operating
Conditions = Field]: < 10 minutes.
Design: Tool simulators, reverse
cracking tool, generation of
simulated telemetry frames entirely
in software, application specific
sophistication for drilling – recorded
mode simulation by playing back the
dump file, application test harness
console <- 6.2.1 HFS.

Figure 8 Quantitative definition of
Testability, an attribute of Robustness

Note this example shows the notion
of there being different levels of
requirements. Principle 1 also has
relevance here as it is concerned with
top-level objectives (requirements). The
different levels that can be identified
include: corporate requirements, the
top-level critical few project or product
requirements, system requirements and
software requirements. We need to clearly
document the level and the interactions
amongst these requirements.

An additional notion is that of ‘sets of
requirements’. Any given stakeholder is
likely to have a set of requirements rather
than just an isolated single requirement.
In fact, achieving value could depend on
meeting an entire set of requirements.

Principle 5. Don’t mix ends and
means

“Perfection of means and confusion of
ends seem to characterize our age.”
Albert Einstein. 1879-1955
The problem of confusing ends and
means is clearly an old one, and deeply
rooted. We specify a solution, design
and/or architecture, instead of what
we really value – our real requirement.
There are explanatory reasons for this –
for example solutions are more concrete,
and what we want (qualities) are more
abstract for us (because we have not yet
learned to make them measurable).

The problems occur when we do confuse
them: if we do specify the means, and not
our true ends. As the saying goes: “Be
careful what you ask for, you might just
get it” (unknown source). The problems
include:
• You might not get what you really want
• The solution you have specified might
cost too much or have bad side effects,
even if you do get what you want
• There may be much better solutions
you don’t know about yet.

So how to we find the ‘right requirement’,
the ‘real requirement’ [10] that is being
‘masked’ by the solution? Assume that
there probably is a better formulation,
which is a more accurate expression of
our real values and needs. Search for it
by asking ‘Why?’ Why do I want X, it is
because I really want Y, and assume I will
get it through X. But, then why do I want
Y? Because I really want Z and assume
that is the best way to get X. Continue
the process until it seems reasonable to

43

Software Engineering

stop. This is a slight variation on the ‘5
Whys’ technique [11], which is normally
used to identify root causes of problems
(rather than high-level requirements).

Assume that our stakeholders will
usually state their values in terms of
some perceived means to get what they
really value. Help them to identify (The
5 Whys?) and to acknowledge what they
really want, and make that the ‘official’
requirement. Don’t insult them by telling
them that they don’t know what they
want. But explain that you will help them
more-certainly get what they more deeply
want, with better and cheaper solutions,
perhaps new technology, if they will go
through the ‘5 Whys?’ process with you.
See Figure 9.

Why do you require a ‘password’?
For Security!

What kind of security do you want?
Against stolen information.

What level of strength of security
against stolen information are you
willing to pay for? At least a 99%
chance that hackers cannot break in
within 1 hour of trying! Whatever that
level costs up to €1 million.

So that is your real requirement?
Yep.

Can we make that the official
requirement, and leave the security
design to both our security experts,
and leave it to proof by measurement
to decide what is really the right
design? Of course!

The aim being that whatever
technology we choose, it gets you
the 99%?

Sure, thanks for helping me articulate
that!

Figure 9 Example of the requirement,
not the design feature, being the real
requirement

Note that this separation of designs from
the requirements does not mean that you
ignore the solutions/designs/architecture
when software engineering. It is just that
you must separate your requirements -
including any mandatory means - from
any optional means. The key thing is

to understand what is optional so that
you consider alternative solutions. See
Figure 10, which shows two alternative
solutions: Design A with Designs B and
C, or Design A with Design D. Assuming
that say, Design B was mandatory, could
distort your project planning.

Figure 10 A graphical way of understanding
performance attributes (which include all
qualities) in relation to function, design
and resources. Design ideas cost some
resources, and design ideas deliver
performance (including system qualities)
for given functions.

Principle 6. Capture explicit
information about value

How can we articulate and document
notions of value in a requirement
specification? See the example for
Intuitiveness, a component quality of
Usability, given in Figure 11, which
expands on Figure 6.

Figure 10

Usability.Intuitiveness:

Type: Marketing Product Requi-
rement.
Stakeholders: {Marketing Director,
Support Manager, Training Center}.
Impacts: {Product Sales, Support
Costs, Training Effort, Documentation
Design}.
Supports: Corporate Quality Policy
2.3.
Ambition: Any potential user, any
age, can immediately discover and
correctly use all functions of the
product, without training, help from
friends, or external documentation.
Scale: % chance that a defined
[User] can successfully complete the

defined [Tasks] <immediately>, with
no external help.
Meter: Consumer Reports tests all
tasks for all defined user types, and
gives public report.

Analysis
Trend [Market = Asia, User =
{Teenager, Early Adopters}, Product =
Main Competitor, Projection = 2013]:
95%±3% <- Market Analysis.
Past [Market = USA, User = Seniors,
Product = Old Version, Task = Photo
Tasks Set, When = 2010]: 70% ±10%
<- Our Labs Measures.
Record [Market = Finland, User =
{Android Mobile Phone, Teenagers},
Task = Phone+SMS Task Set, Record
Set = January 2010]: 98% ±1% <-
Secret Report.

Our Product Plans
Goal [Market = USA, User = Seniors,
Product = New Version, Task = Photo
Tasks Set, When = 2012]: 80% ±10%
<- Draft Marketing Plan.
Value [Market =USA, User = Seniors,
Product = New Version, Task = Photo
Tasks Set, Time Period = 2012]: 2M
USD.
Tolerable [Market = Asia, User =
{Teenager, Early Adopters}, Product
= Our New Version, Deadline =
2013]: 97%±3% <- Marketing Director
Speech.
Fail [Market = Finland, User =
{Android Mobile Phone, Teenagers},
Task = Phone+SMS Task Set, Product
Release 9.0]: Less Than 95%.
Value [Market = Finland, User =
{Android Mobile Phone, Teenagers},
Task = Phone+SMS Task Set, Time
Period = 2013]: 30K USD.

Figure 11

44

Software Engineering

Figure 11 A fictitious Planguage example,
designed to display ways of making the
value of a requirement clear

For brevity, a detailed explanation is not
given here. Hopefully, the Planguage
specification is reasonably understandable
without detailed explanation. For example,
the Goal statement (80%) specifies which
market (“USA”) and users (“Seniors”)
it is intended for, which set of tasks are
valued (the “Photo Tasks Set”), and when
it would be valuable to get it delivered
(“2012”). This ‘qualifier’ information in all
the statements, helps document where,
who, what, and when the quality level
applies. The additional Value parameter
specifies the perceived value of achieving
100% of the requirement. Of course,
more could be said about value and its
specification, this is merely a ‘wake-
up call’ that explicit value needs to be
captured within requirements. It is better
than the more common specifications of
the Usability requirement, that we often
see, such as: “The product will be more
user-friendly, using Windows”.

So who is going to make these
value statements in requirements
specifications? I don’t expect developers
to care much about value statements.
Their job is to deliver the requirement
levels that someone else has determined
are valued. Deciding what sets of
requirements are valuable is a Product
Owner (Scrum) or Marketing Management
function. Certainly, the IT staff should
only determine the value related to IT
stakeholder requirements!

Principle 7. Ensure there
is ‘rich specification’:
requirement specifications
need far more information than
the requirement itself!

Far too much emphasis is often placed
on the requirement itself; and far too
little concurrent information is gathered
about its background, for example: who
wants this requirement and when? The
requirement itself might be less than 10%
of a complete requirement specification
that includes the background information.
It should be a corporate standard to specify
this related background information, and
to ensure it is intimately and immediately
tied into the requirement itself.

Such background information is useful
related information, but is not central

(core) to the implementation, and nor is
it commentary. The central information
includes: Scale, Meter, Goal, Definition
and Constraint.

Background specification includes:
benchmarks {Past, Record, Trend},
Owner, Version, Stakeholders, Gist (brief
description), Ambition, Impacts, and
Supports. The rationale for background
information is as follows:
• To help judge the value of the
requirement
• To help prioritize the requirement
• To help understand the risks associated
with the requirement
• To help present the requirement in more
or less detail for various audiences and
different purposes
• To give us help when updating a
requirement
• To synchronize the relationships
between different but related levels of the
requirements
• To assist in quality control of the
requirements
• To improve the clarity of the
requirement.
Commentary is any detail that probably
will not have any economic, quality or
effort consequences if it is incorrect, for
example, notes and comments.

See Figure 12 for an example, which
illustrates the help given by background
information regarding risks.

Testability:

Type: Performance Quality.
Owner: Quality Director. Author:
John Engineer.
Stakeholders: {Users, Shops, Repair
Centers}.
Scale: Mean Time Between Failure.
Goal [Users]: 20,000 hours <-
Customer Survey, 2004.
Rationale: Anything less would be
uncompetitive.
Assumption: Our main competitor
does not improve more than 10%.
Issues: New competitors might
appear.
Risks: The technology costs to reach
this level might be excessive.
Design Suggestion: Triple redundant
software and database system.
Goal [Shops]: 30,000 hours <- Quality
Director.
Rationale: Customer contract specifi-
cation.

Figure 12

Assumption: This is technically po-
ssible today.
Issues: The necessary technology
might cause undesired schedule
delays.
Risks: The customer might merge
with a competitor chain and leave us
to foot the costs for the component
parts that they might no longer
require.
Design Suggestion: Simplification
and reuse of known components.

Figure 12 A requirement specification
can be embellished with many
background specifications that will help
us to understand risks associated with
one or more elements of the requirement
specification [12].

Background information must not be
scattered around in different documents
and meeting notes. It needs to be directly
integrated into a sole master reusable
requirement specification object.
Otherwise it will not be available when
it is needed: it will not be updated, or
shown to be inconsistent with emerging
improvements in the requirement
specification.

See Figure 13 for a requirement template
for function specification [5, page 106],
which hints at the richness possible for
background information.

45

Software Engineering

TEMPLATE FOR FUNCTION SPECIFICATION <with hints>

Tag: <Tag name for the function>.
Type: <{Function Specification, Function (Target) Requirement, Function
Constraint}>.

Basic Information
Version: <Date or other version number>.
Status: <{Draft, SQC Exited, Approved, Rejected}>.
Quality Level: <Maximum remaining major defects/page, sample size, date>.
Owner: <Name the role/email/person responsible for changes and updates to this
specification>.
Stakeholders: <Name any stakeholders with an interest in this specification>.
Gist: <Give a 5 to 20 word summary of the nature of this function>.
Description: <Give a detailed, unambiguous description of the function, or a tag
reference to someplace where it is detailed. Remember to include definitions of
any local terms>.

Relationships
Supra-functions: <List tag of function/mission, which this function is a part of. A
hierarchy of tags, such as A.B.C, is even more illuminating. Note: an alternative
way of expressing supra-function is to use Is Part Of>.
Sub-functions: <List the tags of any immediate sub-functions (that is, the next
level down), of this function. Note: alternative ways of expressing sub-functions
are Includes and Consists Of>.
Is Impacted By: <List the tags of any design ideas or Evo steps delivering, or
capable of delivering, this function. The actual function is NOT modified by the
design idea, but its presence in the system is, or can be, altered in some way. This
is an Impact Estimation table relationship>.
Linked To: <List names or tags of any other system specifications, which this
one is related to intimately, in addition to the above specified hierarchical function
relations and IE-related links. Note: an alternative way is to express such a
relationship is to use Supports or Is Supported By, as appropriate>.

Measurement
Test: <Refer to tags of any test plan or/and test cases, which deal with this
function>.

Priority and Risk Management
Rationale: < Justify the existence of this function. Why is this function necessary?
>.
Value: <Name [Stakeholder, time, place, event>]: <Quantify, or express in words,
the value claimed as a result of delivering the requirement>.
Assumptions: <Specify, or refer to tags of any assumptions in connection with
this function, which could cause problems if they were not true, or later became
invalid>.
Dependencies: <Using text or tags, name anything, which is dependent on this
function in any significant way, or which this function itself, is dependent on in any
significant way>.
Risks: <List or refer to tags of anything, which could cause malfunction, delay, or
negative impacts on plans, requirements and expected results>.
Priority: <Name, using tags, any system elements, which this function can clearly
be done after or must clearly be done before. Give any relevant reasons>.
Issues: <State any known issues>.

Specific Budgets
Financial Budget: <Refer to the allocated money for planning and implementation
(which includes test) of this function>.

Figure 13 A template for function specification [5, page 106]

Principle 8. Carry out
specification quality control
(SQC)

There is far too little quality control of
requirements against relevant standards.
All requirements specifications ought
to pass their quality control checks
before they are released for use by the
next processes. Initial quality control
of requirements specification, where
there has been no previous use of
specification quality control (SQC) (also
known as Inspection), using three simple
quality-checking rules (‘unambiguous
to readers’, ‘testable’ and ‘no optional
designs present’), typically identifies 80 to
200+ words per 300 words of requirement
text as ambiguous or unclear to intended
readers! [13]

Principle 9. Consider the total
lifecycle and apply systems-
thinking - not just a focus on
software

If we don’t consider the total lifecycle
of the system, we risk failing to think
about all the things that are necessary
prerequisites to actually delivering full
value to real stakeholders on time. For
example, if we want better maintainability
then it has to be designed into the
system. If we are really engineering
costs, then we need to think about the
total operational costs over time. This
is much more than just considering the
programming aspects.

You must take into account the nature
of the system: an exploratory web
application doesn’t need to same level
of software engineering as a real-time
banking system!

Principle 10. Recognise
that requirements change:
use feedback and update
requirements as necessary

Ideally requirements must be developed
based on on-going feedback from
stakeholders, as to their real value.
System development methods, such as
the agile methods, enable this to occur.
Stakeholders can give feedback about
their perception of value, based on the
realities of actually using the system. The
requirements must be evolved based
on this realistic experience. The whole
process is a ‘Plan Do Study Act’ Shewhart

46

Software Engineering

cyclical learning process involving many
complex factors, including factors from
outside the system, such as politics, law,
international differences, economics, and
technology change.

Attempts to fix the requirements in advance
of feedback, are typically wasted energy
(unless the requirements are completely
known upfront, which might be the case
in a straightforward system rewrite with
no system changes). Committing to fixed
requirements specifications in contracts
is not realistic.

Who or What Will Change
Things?

Everybody talks about requirements, but
few people seem to be making progress to
enhance the quality of their requirements
specifications and improve support for
software engineering. Yes, there are
internationally competitive businesses,
like HP and Intel that have long since
improved their practices because of
their competitive nature and necessity
[8, 14]. But they are very different from
the majority of organizations building
software. The vast majority of IT systems
development teams we encounter are not
highly motivated to learn or practice first
class requirements (or anything else!).
Neither the managers nor the systems
developers seem strongly motivated to
improve. The reason is that they get by
with, and even get well paid for, failed
projects.

The universities certainly do not train
IT/computer science students well in
requirements, and the business schools
also certainly do not train managers
about such matters [15]. The fashion
now seems to be to learn oversimplified
methods, and/or methods prescribed
by some certification or standardization
body. Perhaps insurance companies and
lawmakers might demand better industry
practices, but I fear that even that would
be corrupted in practice if history is any
guide (for example, think of CMMI and
the various organization certified as
being at Level 5).

Summary

Current requirements specification
practice is often woefully inadequate for
today’s critical and complex systems.
Yet we do know a considerable amount

(Not all!) about good practice. The main
question is whether your ‘requirements’
actually capture the true breadth of
information that is needed to make
a start on engineering value for your
stakeholders.

Here are some specific questions for
you to ask about your current IT project’s
requirements specification:
• Do you have a list of top-level critical
objectives?
• Do you consider multiple stakeholder
viewpoints?
• Do you know the expected stakeholder
value to be delivered?
• Have you quantified your top five quality
attributes? Are they are testable? What
are the current levels for these quality
attributes?
• Are there any optional designs in your
requirements?
• Can you state the source of each of
your requirements?
• What is the quality level of your
requirements documentation? That is,
the number of major defects remaining
per page?
• When are you planning to deliver
stakeholder value? To which
stakeholders?

If you can’t answer these questions
with the ‘right’ answers, then you have
work to do! And you might also better
understand why your IT project is drifting
from delivering its requirements. The
good news is that the approach outlined
in this article should allow you to focus
rapidly on what really matters to your
stakeholders: value delivery.

References

1. Thomas Carper, Report Card to the
Senate Hearing “Off-Line and Off-Budget:
The Dismal State of Federal Information
Technology Planing”, July 31, 2008. See
http://uscpt.net/CPT_InTheNews.aspx
[Last Accessed: August 2010].

2. The Standish Group, “Chaos
Summary 2009”, 2009. See http://
www.standishgroup.com/newsroom/
chaos_2009.php [Last Accessed: August
2010].

3. John McManus and Trevor Wood-
Harper, “A Study in Project Failure”,
June 2008. See http://www.bcs.org/
server.php?show=ConWebDoc.19584
[Last Accessed: August 2010].

4. David Yardley, Successful IT Project
Delivery, Addison-Wesley, 2002. ISBN
0201756064.

5. Tom Gilb, “Competitive Engineering:
A Handbook for Systems Engineering,
Requirements Engineering, and
Software Engineering using Planguage”,
Elsevier Butterworth-Heinemann, 2005.

6. Jennifer Stapleton (Editor), DSDM:
Business Focused Development (2nd
Edition), Addison Wesley, 2003. ISBN
0321112245. First edition published in
1997.

7.	 Mike Cohn, User Stories
Applied: For Agile Software
Development, Addison Wesley, 2004.
ISBN 0321205685.

8. Trond Johansen and Tom Gilb, From
Waterfall to Evolutionary Development
(Evo): How we created faster, more
user-friendly, more productive software
products for a multi-national market,
Proceedings of INCOSE, 2005. See
http://www.gilb.com/tiki-download_file.
php?fileId=32

9. Dr. Billy Vaughn Koen, “Discussion of
the Method: Conducting the Engineer's
Approach to Problem Solving”, Oxford
University Press, 2003.

10. Tom Gilb, Real Requirements, see
http://www.gilb.com/tiki-download_file.
php?fileId=28

11. Taiichi Ohno, “Toyota production
system: beyond large-scale production”,
Productivity Press, 1988.

12. Tom Gilb, “Rich Requirement
Specs: The use of Planguage to clarify
requirements”, see http://www.gilb.com/
tiki-download_file.php?fileId=44

13. Tom Gilb, Agile Specification Quality
Control, Testing Experience, March 2009.
Download from www.testingexperience.
com/testing experience01_08.pdf [Last
Accessed: August 2010].

14. Top Level Objectives: A slide
collection of case studies. See http://
www.g i lb .com/ t i k i -download_f i le .
php?fileId=180

15. Kenneth Hopper and William Hopper,
“The Puritan Gift”, I. B. Taurus and Co.
Ltd., 2007.

47

Software Testing

Getting the truth, the
whole truth and nothing
but the truth from your
Test Management Tool…
Dream or Reality?

Author: Eric RIOU du COSQUERbasic

intermediate
advanced

About the author:

Eric RIOU du COSQUER
is responsible for a
team dedicated to
Requirements and Tests
Management at Orange,
a worldwide French
telecommunication com-
pany. In his current position, he is in
charge of defining and implementing the
processes dedicated to Requirements
and Test management and also to select
and support the associated tools. His
daily activities also consist in providing
internal training courses and support to
the software projects of the Information
system division of France Télécom.
He owns the Foundation Level and
TestManager/Test Analyst Advanced
Level certificates of the International
Software Testing Qualifications Board.
Contact : eric.riouducosquer@orange.fr

Abstract

Ten years ago it was a delicate
business to convince people to use a
Test Management Tool! Nowadays the
situation seems to be far better since
most of the IT projects are using that type

of tool. But do you think the legitimate
expectations of the Test Manager and
Project Manager are fulfilled? According to
my experience in supporting and auditing
Test Projects for the Information System
Division of a large Telecommunication
company, I would unfortunately answer «
No! » without any hesitation. The goal of
this presentation is not only to make you
understand why the test management
tool too often turns into a gasworks but
also to help you obtain the best from your
tool.

1 Introduction

In order to get all the test-related
information you need with complete
confidence, let’s go back to the basic
principles and success criteria to be
implemented!

2 Rethink the main reasons
why you are using a Test
Management Tool!

2.1 Three high level abstract reasons

2.1.1 Cost, Delay, Quality

The Return on Investment of the
Test Management Tool is easy to

demonstrate.
The main costs are the following:
- Expense 1 : software licenses, required
hardware and maintenance costs (unless
you are using an open source tool)
- Expense 2 : Trainings (cost of the
training itself and cost of the time spent
by the participants)
- Expense 3 : Time spent using the tool
- Gain 1 : Time saved compared to the
same job carried out with Excel sheet or
other documents
- Gain 2 : Positive Business Impact due
to a higher quality and a smaller number
of failures

2.1.2 Keep the customer satisfied

Keeping the customer satisfied is also a
good reason to use a test management
tool. The tool will directly contribute
to a higher “technical” quality of the
final product. Actually, having a good
“technical” quality is not enough to satisfy
the customer! One of the key points here
is the requirements coverage that should
ensure not only a good “technical” quality
but also a good “functional” quality.

2.1.3 Offer a more interesting job to
the testers!

Doing the same task as previously
but with a specific tool may be quite

48

Software Testing

motivating if the tool is user friendly.
Unfortunately it is rarely the first reason!

2.2 Eight Low level concrete reasons…
(More valuable)

2.2.1 A good cooperation between the
stakeholders

Business Owner, IT Project manager,
Test Manager, Testers, Suppliers and
other external partners use the Test
Management tool in different ways.
A Business Owner is expecting Proofs of
testing and a status of the Requirements
implementation...

An IT Project manager has to get
information from the bottom and provide
information to the top.

A Test Manager has to manage the
testing activities quickly, get and provide
information to the Project manager and
check outsourced testing activities.
Testers need to know what to do while
tests execution.

Suppliers and Other External Partners
have to build their tests from the right
requirements and provide visibility on
their testing activities.

2.2.2 Centralization (tests, tests
executions and results)

Everything is at the same place, no more
files to look after, and no more versions
to fight with. Isn’t it a good reason?

2.2.3 Easier reporting at several levels
(Document generation)

Depending on your needs and your
position, the tool should be able to easily
generate the reports you need to make a
decision or give an approval.
Testers need to know what they still have
to do.

Tests manager must be able to quickly
answer the following questions: What
are the remaining testing tasks? What is
the real status of the tested components,
applications or system?

A project manager needs the answer to the
following questions: How is testing going
on? Where are the main weaknesses in
the tested items? What is going wrong in

Picture 1 A good cooperation between the stakeholders

Picture 2 Efficient and Real-time reporting at several levels (single repository)

49

Software Testing

my development process?

2.2.4 Real time follow-up

Everything is up to date and available in
a test management tool.

No need to look after documents or
people to get the information!

2.2.5 A record of all the results

All the results (even discussions, changes
and comments) are recorded with detailed
information: date, time, author…

2.2.6 Facilities to check the
Requirements Coverage thanks to the
Requirements-Tests link

Each test is testing something.
This « something » should be specified «
somewhere ».

This « somewhere » should either be
referenced as a Requirement or be
the Requirement itself. If there is no
specification regarding what is tested, a
new requirement should be created.

2.2.7 Facilities to accelerate the
Defects correction thanks to the link
between Defects and Test execution
results

You will save time by creating the defect
during test execution.
The link between defects and tests
execution result will help reproduce a
defect by re-playing the associated test.
The link will also be useful to check the
correction of a defect.

2.2.8 Reuse test artifacts

Thanks to the Test Management Tool, you
will easily reuse test artifacts at several
levels in a single project:
- From one version of an application to
another
- Between projects of the same type
- To achieve regression testing

3 « Prerequisites »: What should you
have before using the tool?

Before packing you should know where
you are going…
Before using a test management tool you
should know which elements will guide
its implementation and the construction
of its internal structure…

3.1 The Testing Process

It is one of those IT processes which
is strongly related to the development
process.

The testing process involves several
kinds of roles and activities with expected
deliverables.

The Test Management Tool is intended to
optimize and facilitate the instantiation of
the testing process.

Its internal organization is fully based on
IT Processes, particularly on the testing
process, and on their specific terms
(vocabulary, activities, roles…)

3.2 Documents

Each test is testing something. This
« something » should be described
somewhere.
Several documents include information
that will be useful to create Requirements
and Tests. Identify them!

3.3 Testing Levels in your context

Name and describe them!

3.4 Test Environments

Each test execution is carried out in
a specific environment and its results
often depend on the test environment. A
single test may have different result if the
environment is not the same.

Picture 3 Prerequisites: Delivery Concepts

50

Software Testing

This concept of Environment should be
taken into account in the dynamic part of
the tool (Test Suites & Test Execution).

4 How to motivate people (or
diplomatically force them) to use the
tool?

Get a high level Management Decision…
eventually based on a local success.
Involve motivated people in a visible pilot
project
Communicate and brainstorm from the
beginning of the pilot phase.
Listen to people’s expectations.
Clearly show how the tool will help.
Define, spray and control smoothly the
rules.
Continuously help and support
stakeholders, don’t leave them alone
once the test project is started!
Accept valuable compromises.
Organize a close cooperation between
stakeholders using the tool.
Set up a regular reporting to all the pairs
of a specific level and their managers.

5 How can we deal with synchronization
and traceability issues?

Requirements management tool, Defects
management tool, Tests execution tools,
Incident management tool, Configuration
management tool, Modeling tool and
Development tool are more or less
associated to the Test Management
Tool.
No vendor provides a suite that would
integrate the functionalities of all those
tools and it is not realistic to look for a

perfect technical integration between all
those tools.
The most important thing is to study
carefully all the possible interactions
and associated needs. Then you have
to specify how to address each need,
manually or with a specific development.

6 What can we do with the test items
from one version to another?

A test may be modified and consequently
may exist in several versions. The tested
items may also exist in several versions.
We may have version management at
several levels. Depending on the tested
version of a test item and on the version
of the test, the results may be different.
The configuration of the test environment
may also be version managed
The consequence is that for each test
execution, you must be able to identify
the version of the tested item, the test
and the test environment.

7 What is the right level of granularity
for your rules and recommendations?
And how can we make sure they are
applied?

What for? You need rules and
recommendations to ensure a proper use
of the tool by all the stakeholders.
For what? You should provide rules for all
the basic features of the tool.
Which level of granularity? It depends on
the perimeter the tool is used. The largest
it is, the lowest the level of granularity.
How to make sure they are applied?
Check, check, check!

8 What kinds of training should be
implemented?

You need 3 types of trainings:
- Basic use of the tool (independent from
you context)
- Advanced use of the tool (independent
from your context)
- Use of the tool in YOUR specific
CONTEXT in an EFFICIENT way (context
specific)

8.1 Basic use of the tool

In this first type of training, you should
specify how to:
- Get an access to the tool!
- Create a Requirement
- Create a Test Case
- Associate Requirements and Test
Cases
- Organize Test Cases into Test Suites
- Launch Test Suites
- Create Defects
- Associate Defects to Test Execution
Results
- Follow-up the whole testing progress
- Use pre-defined Reports

8.2 Advanced use of the tool

In this second type of training, you should
specify how to:
- Manage users and associated rights
- Customize project items (attributes
describing a test...)
- Customize workflows
- Create script implementing specific
needs
- Implement mail notification
- Define reports

8.3 Context-specific training

In this third type of training, you should:
- Describe the stakeholders involved
in testing, respective roles and
responsibilities
- Reference the main documents (Test
Plan…)
- Describe the « structural » items
- Specify Rules to be applied while
creating the structures (folder trees)
- Identify and describe the attributes
needed for each item (Requirement, Test
Case, and Defect)
- Describe procedures for the main
actions
- Explain the recommended reporting
(Which reports are available? How to
generate them?)Picture 4 Cooperation with other tools

51

Software Testing

What a Tester Should
Know, At Any Time, Even
After Midnight

Author: Hans Schaefer

basic

intermediate
advanced

About the author:

Hans Schaefer
Software Test Consulting
Chairman, Norwegian Software Testing
Qualifications Board
N-5281 Valestrandsfossen, NORWAY
www.softwaretesting.no
hans.schaefer@ieee.org

You can do the necessary testing «just as
a job». This is neither good enough nor is
it motivating for the tester. Alternatively,
you can invest «the little extra», i.e. do
a better job. In this article, I try to define
what this «little extra» means.

Major facts are the idea of a tester as a
“devil’s advocate” in the chase for potential
and real defects; the need to prioritize by
risk and profit or importance; the use of
facts about defects, such as their uneven

distribution. But in order to do a good
job, the tester must require quality of the
product to be tested. There is the Tester’s
Bill of Rights. Finally there is the need to
continuously learn: About defects, the
application area, software development,
and test methods and tools. This way,
testing turns into an interesting and
rewarding job, and the tester contributes
effectively and efficiently to the project.

1. Testing the Normal Way is
not Enough

Systematic testing of software or systems
can be learned, just like any engineering
discipline. There are tester knowledge
certification schemes (ISTQB, ISEB,
GTB), there are books (Myers 79, Beizer
95, Kaner 99, Copeland 2004,) and there
are standards (ISTQB Glossary, BS
7925, IEEE 829, 1008, 1012,). At least
the books and most of the standards have
been around for a long time, and many
techniques are widely accepted. This
means testing can actually be studied
and then executed in some systematic
way. This does not mean that the typical
testing methods described in this material
are widely practiced (Schaefer 2004).
But it is at least possible to do testing «by
following the book».

For a tester, or test engineer, there are
two major activities: Designing test cases,
and executing test cases and observing
and analyzing the results. If the results are
not what was expected, deviations must
be reported and followed up. Additionally,
modern methods, such as exploratory
testing (Bach website), include tasks like
automation, and management of testing
time in the tester’s task list.

The normal way of performing a tester’s
job is to learn some techniques, follow
these techniques, execute the test, and
conclude the work with a test report. The
typical task description tells people to
«test the system», wihtout defining any
more details. Some books define the task
as «getting information about the quality»,
or «measuring quality» (Hetzel). As test
execution is one of the last activities
in a project, it is very often run under
severe budget and time pressure. This
means that the testers have a hidden or
open motivation to compromise on the
thoroughness of their job. For example,
since the detection of defects will always
delay both testing and the delivery or
acceptance of the product, there is a
hidden pressure not to find any defects,
or at least not serious ones. Testing is
just «done». This job is then not very
motivating, investment in learning is
scarce, people try to find a different job,
and testing does not improve over time.

2. Can We Do Testing in a Better
Way?

Glenford Myers, in 1979, defined testing
differently: The aim of testing is to find
defects. He used this definition because
it motivates people. Having a negative
focus, trying to break the product, leads
to finding more and more serious defects
than just checking whether the product
«works».

Most people do as they are told. If they
are told to find as many defects as
possible, they will try to do so. If they are
told to get the job done (and explicitly or
inherently get the message that defects
delay progress), people will try not to find

52

Software Testing

defects, or they will overlook many.

Thus the first rule is to clearly define
the purpose of testing, and make the
purpose perfectly clear to people. This
will be discussed in section 3.

There is an additional problem with
any job, not only testing: The world is
developing, especially in software. New
techniques, methods and tools become
available or are used in design. Software
products are more and more integrated
with each other and growing more
and more complex. The focus of the
requirements is changing, for example
towards emphasizing more security,
interoperability and usability. This leads
to changes in the requirements on
the testing job. Thus, a tester should
continuously try to learn more. This will
be discussed in section 4.

The next problem is the mindset of people.
Some people readily accept information
they see or rules that are given. Other
people are critical and investigate and
ask. As one of the purposes of testing is
to find problems and defects, a mindset
that does not accept everything without
asking, checking more details, getting
more information or thinking would lead
to better testing. This will be discussed
in section 5.

Part of the tester’s task is to report
incidents. This is not easy. Most literature
read by testers just describes issue and
defect management, i.e. the life cycle of
reporting, prioritizing and handling these.
But this is just «the ordinary job». Actually,
there is more to it. It can be compared
to the task a frustrated user has when
calling the supplier help desk: Describing
the problem in such a way that the other
side accepts it as important enough to do
something about it. It means collecting
more information about the trouble, but
also to think about how to «sell» the bug
report to the responsible person. This is
the topic of section 6.

Finally, a tester has some rights. We
should not just test anything thrown at us
over the wall. If information we need is
not available, or if the product to be tested
is far too bad, testing it anyway would
mean to waste resources. There should
be some entry criteria to testing, some
«Tester’s Bill of Rights» (Gilb 2003). This
is discussed further in section 7.

All of this has to do with the philosophy of

testing. But there are some tools, some
very basic rules for doing the work. There
is a lot of controversy about what the
basis is, but I dare to include a few from
a conference speech (Schaefer 2004).
This is topic of section 8.

There is definitely more to it. A tester
should always be on the outlook for more
challenges in field of testing. This paper
is only the beginning of what you may
look for.

3. The Purpose of Testing

There are a lot of possible goals for
testing. One main, though possibly
boring, purpose is to measure the
quality of a product. Testing is then
considered just a usual measuring
device. Just usual measuring is not
much fun, but is a necessary job, which
must be done well. However, there are
questions a tester should ask in order to
measure optimally. The main question
is which quality characteristics are most
important to know, and how precisely the
measurement must be performed.

Another definition of testing is trying
to create confidence in the product.
Confidence, however, is best built by
trying to destroy it (and not succeeding
in doing so). It is like scientific work:
Someone proposes a new theory, and
all the educated specialists in the area
try all they can to show that it is wrong.
After this has been tried unsuccessfully
for some time, the new theory is slowly
adopted. (Anyway, a theory is only
valuable if it is concrete enough to offer
the possibility to be fasified). This view
supports Myers’ definition of software
testing: Find defects! The approach is
a pessimist’s approach. The pessimist
believes «this probably does not work»
and tries to show it. Every defect found is
then a success.

People function by motivation. The
definition of testing as actively searching
for bugs is motivating, and people find
more bugs this way. It works in two ways:
One is by designing more destructive test
cases or just simply more test cases. The
other is by having a closer look at the
results, analyzing details a non-motivated
tester would overlook. In the latter case
this may mean to analyze results that
are not directly visible at the screen, but
are deep inside some files, databases,
buffers or at other places in the network.

A tester should try to find defects!
Defects may appear in places
where you do not see them easily,
i.e. not on the screen output!

But it is more than this! “Defects are
like social creatures: they tend to clump
together.” (Dorothy Graham, private
communication). It is like mosquitoes: If
you see and kill one, do you think this is
the last one in the area? Thus we may
have a deeper look in areas where we
find defects. Testers should have an
idea where to look more. They should
study quality indicators, and reports
about them. Indicators may be the actual
defect distribution, lack of internal project
communication, complexity, changes, new
technology, new tools, new programming
languages, new or changed people in the
project, people conflicts etc. The trouble
is that all these indicators may sometimes
point in the wrong direction. The defects
found may have been detected at nearly
clean places, just because the distribution
of test cases has tested these areas
especially well. Project communication
may look awful; some people who should
communicate may be far from each other.
But such people might communicate well
anyway, in informal or unknown ways,
or the interface between the parts they
are responsible for may have been
defined especially well, nearly “idiot-
proof”. Complex areas may be full of
errors. There is a lot of research showing
that different complexity indicators may
predict defect distribution. However,
there are nearly always anomalies. For
example, the most experienced people
may work with the most complex parts.
Changes introduce defects or may be
a symptom for areas, which have not
been well analyzed and understood. But
changes may also have been especially
well thought out and inspected. In some
projects, there are «dead dogs» in central
areas that nobody wants to wake. These
central areas are then badly specified,
badly understood and may be completely
rotten. But since nobody wants to «wake
the sleeping dog» there are no change
requests. New technology is a risk, partly
because technology itself may lead to
new threats, partly because using it is
new to the people. People do not know
what its challenges are. The same is true
about the testers. Little may be known
about the boundaries of technology and
tools. However, it may work the opposite
way: New technology may relieve us of
a lot of possible defects, or simply make
them impossible.

53

Software Testing

Finally we may look at the people
involved. It is the people who introduce
the defects. Research has shown that
«good» and «bad» programmers have
widely differing productivities and defect
rates. However, defects do not only result
from programming. It is more difficult to
map people to design and specification
trouble. But at least one factor nearly
always has a negative impact: Turnover.
If people take over other people’s job,
they very often do not get the whole
picture, because tacit knowledge is not
transferred. This is especially true if there
was no overlap between people.
Thus, there are lots of indicators that may
lead us to more defects, but we have to
use them with care.

Defects clump together: they are
social!
Defects often have a common
cause!
Try to find common causes, and
then follow them!
Where you find defects, dig
deeper!

Another definition of testing is «measuring
risk». This simply means that testing
is a kind of risk mitigation, part of risk
management. Testers should have an
idea about product risk, as well as risk
management. In the worst case, testers
should ask questions about product risk,
especially if nobody else asks these
questions.

A very basic method for this is looking
at the usage profile, and at possible
damage. A tester should ask which kind
of user would do what and how often.
How will different users use the system?
How will this vary over time? And a very
important aspect is not to forget about
wrong inputs and misuse. People have
finger trouble, and interfacing systems
have bugs. Thus there is not only use
with correct inputs, but probably also a lot
of use with wrong inputs. There are three
kinds of tests: The good, the bad and
the ugly tests: Good means everything
is fine, all inputs are right. Bad means
inputs are wrong. The ugly tests is where
all hell breaks loose: Someone restarts
the server while you do your reservation
and at the same time sets the machine
date wrong, …
The other risk factor is possible damage.
This may be difficult to analyze. A start is
to at least ask oneself: “What is the worst
thing that can happen if this function,
feature or request fails?”

Testing is risk mitigation.
What determines risk?
What happens if some input is
wrong?

As a summary, it is best if the tester is a
pessimist. (A pessimist is an optimist with
experience). If something does not work,
it is good news, because nobody will have
the defect later. The positive effect will
be felt in the long run. Better test forces
developers to do better work, it informs
management about risks, and it leads to
lower cost (for repair). Testers bring bad
news, but this is their job. Nobody loves
speed checks on the motorway! But
speed checks make our roads safer, and
we all benefit.

A pessimist is a better tester!

4. Continuous Learning

Continuous learning is required in nearly
every job. But for testers it is absolutely
essential. In most cases, testing is done
somehow systematically, using some
black box approach. In addition, test
design may follow heuristics. Any black
box approach may leave important areas
uncovered. Any heuristic approach is
incomplete, as it is dependent on personal
experience (or on learnt experience from
others). And white box testing does not
uncover errors of omission. It all comes
down to this: If there is some aspect
the tester doesn’t know, it is not tested.
Thus the tester should know as much as
possible. But how?

A tester needs programming experience.
There are lots of programming bugs,
even after unit testing by programmers.
(Unit testing is often not done well
anyway). The tester should have an
idea of what is difficult with the particular
programming language used. As an
example, loops and their counters are
difficult in most cases, resulting in off-
by-one errors. If the tester has no idea
about these, s/he will not check loops
with zero, one, maximum and more than
maximum iterations, or will not check
which individual object is selected. Then
off-by-one errors will only be found by
chance.

The tester needs design experience.
Much design is about contracts and
communication: Which module within
which constraints and with which
reactions should do which tasks? And

where are these modules? How do they
communicate and solve conflicts? If the
tester has no idea about architectures
and their inherent problems, s/he will
have trouble planning (integration) tests.

The tester needs domain experience.
System testing is about implementing
the right solution, doing what the
domain requires. Can you test a railway
interlocking system? (Eh, what does
interlocking mean, by the way...?). At
least SOME domain experience should
be there, and/or communication with
different stakeholders.

The trouble is: This is not enough.
Much about testing is getting the right
information from the right people.
Interview techniques are an interesting
topic to learn. You get more information
if you know how to interview people!

New systems interface with other
systems in more and more intricate
ways. And there are more and more
unexpected interfaces. As an example,
someone may integrate YOUR web
service into HIS web site, together with
other web services. Or your service
works in a completely different way than
someone else’s, and is thus not attractive
any more (or much more attractive than
expected). This means: Testing for
today’s stakeholders may definitely not
be enough. There are totally new ways
your system may be used or interfaced,
totally new ways in which it may be
viewed, and you should try to anticipate
at least part of this!

A tester should always try to find new
ways of looking at the object under test,
new approaches, and new viewpoints.

And finally: We want testers to use the
newest approaches and technology.
You have to learn them. Read testing
books, look for and learn tools, study
journals, participate in discussion
groups, special interest groups, discuss
with your colleagues, and go to testing
conferences!

Learn more, about everything!
Programming, architecture, new
domains, users, tools, anything!

«I am using three things to pull my
equipment: dogs, dogs and dogs.»
(Roald Amundsen)
For a tester, the three things are:
Learning, learning and learning.

54

Software Testing

5. A Critical Mindset

Don’t believe anything! A colleague of
mine said: «Believing, that is the activity
we do on Sunday morning in church.
Everything else we should check.»

The trouble is: Believing is easier. It does
not need any work. We just believe,
because something is like expected, or
because something is easier. Think about
what is written in your newspaper. Is it
really true? Where were the weapons of
mass destruction? Was it really the Jews
who were responsible for all this bad
stuff? Is watching TV really dangerous for
your kids? Is a certain soda really good
for you?

The answer is: It is easiest not to ask.
But if you question everything, you
never get anywhere. Thus in our daily
lives, we are accustomed to not ask and
to take a lot of things for granted. To
believe, or to assume, and TO NOT ASK
QUESTIONS!

As a tester, don’t assume anything. It
may be wrong! Designers, specifiers,
and programmers assume a lot. It may
be difficult to ask because you may look
stupid asking. The other part that could
answer may be far away or not easily
available. You don’t even think there
may be another interpretation. Or the
other part doesn’t know, or you get some
sarcastic answer...

Using the pessimist view, you may as well
assume that any assumption is probably
wrong.

Don’t assume! Ask!

There are ways of overcoming the
trouble that you may look stupid. Learn
how to deal with people, learn how to
interview, learn how to be self-confident.
(With regard to learning, see the section
above). Ask someone else. Read, review,
sleep over it, and try to find different
interpretations. You may need a lawyer’s
mindset.

If you don’t get an answer, have it on
your issues list. But don’t just assume
something! Don’t take things for granted!
And especially: Don’t believe «the system
is probably right». There has been at
least one banking system paying wrong
interest. Difficult to check, after all...
There was a geographical information
system sending you around half the

world instead of the direct way. There are
airline reservation systems not telling you
all available flights. Many more examples
exist.

If nobody else asks the right
question, you might do so!
Think about new possibilities,
unknown problems, and the stuff
you learn.
Think «out of the box»!

6. Defects

Nobody loves the messenger with bad
news!

As a tester, most of what you report is
bad news. (In a few cases there may be
no bad news to bring, because everything
seems to work, but that is a very different
story).
The bad news is the bugs, or «issues»
to call them in a neutral way. Textbooks
handle this area well. There is issue
reporting, registration, handling, removal,
retesting, regression testing. We know all
this. But there is something extra to it,
and that is not found in the books very
much:

1 - An issue is only interesting for a tester
if it is accepted as a defect and repaired.
2 - There are defects, which are the result
of running many test cases in a row in
some very special order.

The first problem is one of salesmanship
and discipline. As a tester, one has a sales
job. Nobody is interested in spending any
money on repairing defects. They will only
be repaired if they are important enough.
Thus, as a tester you have to report an
issue in such a way that the developer
understands that it must be repaired. The
damage must look severe, the probability
of it occurring must look high, and the
issue must be easy to repeat.

Thus the tester should not just write
an issue on the issues list. The tester
should think: Are there any nearby
scenarios that would make this problem
worse? Are there more stakeholders
interested in this? Is this really the whole
problem or is there more to it? It is again
«thinking out of the box». But it may also
mean to invent and run some more test
cases. Cem Kaner has presented some
excellent material on this cause (Kaner
bugadvoc).

Finally, there are the human issues, about

diplomacy, politeness etc. A tester should
make sure not to hurt anyone personally
when reporting an issue. Someone said,
“Diplomacy is the art of asking someone
to go to hell in such a way that he will
enjoy commencing the journey”.

For every issue (or bug), research
more about it!
Make sure you report it as a risk,
and as the whole risk!
Defect reporting is a sales job!
Be diplomatic when reporting
issues!

The second problem is worse: Sometimes
we experience failures, and we cannot
recreate them. For example, the first time
the problem occurs, and the next time
it is not there. These issues are called
»intermittent bugs». They are especially
difficult if they introduce system crashes.
Upon restarting the system, any corrupted
data in the memory may be deleted,
destroying the evidence. In many cases,
intermittent bugs are the result of long-
term corruption of some resource or
memory. One example are memory
leaks. Some function in the program does
not return unused memory after finishing.
But because there is a lot of available
memory, this can go on unnoticed for a
long time, until the memory is depleted.
It is even worse if this does not happen
every time, but only in very special
situations. But also other resources may
be depleted. As an example, the Mars
Explorer ceased working after 18 days due
to too many files accumulated. (Luckily
NASA could download new software). In
many real-time embedded systems, the
tasks are restarted at certain intervals in
order to cancel out possible corruption of
resources.

The trouble is that ANY shared resource
can be corrupted. It comes down to
checking the outputs which are not
as easily visible as the screen: Files,
memory pointers, buffers, databases,
messages to remote systems, registry,
anything. It could be anything. It could
even be the result of a race condition,
which depends on the exact timing of
some parallel tasks. It is easy to see the
screen output; everything else requires
tools or extra actions from the tester.
This may be too much work to do all
the time. And intermittent bugs normally
require a whole sequence of test cases,
not just one input and output. Finally,
it may be somewhere in the operating
system, in the libraries, in something

55

Software Testing

that is not your fault.
However, if intermittent bugs occur, it is
a good idea to be able to rerun the same
sequence of test cases, maybe even with
the same timing, and do more checking
than before. James Bach (Bach 2005)
has a good guide to investigating such
problems:

Analyze even intermittent pro-
blems!
Log everything you do in testing!
Log everything you see, and look
at more remote details!
Make it possible to rerun your
tests, with more logging and
analysis tools switched on!

One final problem: You may be wrong
yourself. Humans err. Testers are
humans. This means you overlook
problems; you misunderstand
outputs, and some of the problems you
think you have found are actually no
problem. Be self-critical: Sometimes it
is your fault. You should also mistrust
your memory. It is restricted. This
means it is better to take notes, to log
what you did, what the system did,
what is installed etc. You can trust
notes more than your memory.

You may be wrong – don’t trust
yourself 100%!
Take notes of what you do!

7. The Tester Has Some Rights

As a tester you have some rights.
Testing is often misused by others to
clean up the mess. Instead of thinking
beforehand, the defects are built into the
system and the testers have to find them.
This is a waste of both time and effort. A
defect found by testers costs many times
the effort, which would have prevented it,
if it had been prevented. It also leads to
extended time to deliver.

Testers should not be used to clean up,
but to measure quality and report risk. It
is plainly the wrong job.

A tester is NOT a vacuum cleaner!

The answer to the problem is using entry
criteria. This means forcing the party
before to do the job reasonably well.
There are at least two sources where a
tester’s Bill of Rights has been published:
Lisa Crispin talks about testers in Extreme
Programming Projects.

The most important tester rights are
these three:
* You have the right to make and update
your own estimates (…).
* You have the right to the tools you need
to do your job (…).
* You have the right to expect your
project team, not just yourself, to be
responsible for quality.

Tom Gilb (Gilb 2003) developed this list
of testers rights (cited with the consent
of the author):

Testers Bill of Rights:

1. Testers have the right to sample their
process inputs, and reject poor quality
work (no entry).
2. Testers have the right to unambiguous
and clear requirements.
3. Testers have the right to test
evolutionarily early as the system
increments.
4. Testers have the right to integrate
their test specifications into the other
technical specifications.
5. Testers have the right to be a party
to setting the quality levels they will test
to.
6. Testers have the right to adequate
resources to do their job professionally.
7. Testers have the right to an even
workload, and to have a life.
8. Testers have the right to specify the
consequences of products that they
have not been allowed to test properly.
9. Testers have the right to review any
specifications that might impact their
work.
10. Testers have the right to focus on
testing of agreed quality products, and
to send poor work back to the source.

The last one is the real clue:

Testers should send bad work
back to the source!

And: Testing is not the right answer.
Prevention is!

Those who want really reliable
software will discover that they
must find means of avoiding the
majority of bugs to start with,
and as a result the programming
process will become cheaper.
If you want more effective
programmers, you will discover
that they should not waste their
time debugging; they should not
introduce the bugs to start with!

Edsgar Dijkstra, "The Humble
Programmer", ACM Turing Award
Lecture 1972.

8. The Late Night Tester's
Toolbox

How should a tester work? What should
a tester always keep in mind when
working?

One main trouble is to test “everything”.
This is far too much. It can never be
achieved. But the tester should have
some idea about what is tested and what
not, or what is tested more or less. This
relates to the test coverage.

In brief, there are three very basic
concepts of coverage, and they can
be applied to any notation, which is a
diagram. For example a control flow
diagram, a data flow diagram, a state
transition diagram, a call graph, system
architecture or a use case.
• Basic coverage executes every box.
• The next level of coverage is testing
every connection.
• This should be the minimum for testing.
If there is more time, the next level is
combining things, for example pairs of
connections.

A tester must be able to state what
coverage a test has achieved!

Next, a test should follow the usage profile.
This is difficult, especially in module and
subsystem testing. But as a tester, one
should at least try to get some idea about
how the object under test will be used. If
nothing can be said, the test should be
directed at any use, testing robustness.
This means that especially test cases for
wrong inputs are of interest.

Follow the usage profile if
possible!
If not this is not possible, test for
robustness against wrong input.

One technique is the basis of most black
box testing: Equivalence partitioning. It
helps to save test effort, and it can be
applied to derive other test techniques.
As a tester, you should know it, but
also be aware that it has caveats: Black
box testing may leave out important
aspects. You should also be aware that
combination testing is of interest. Lee
Copeland (Copeland 2004) has published
a good introduction.

56

Software Testing

Equivalence partitioning is a good
basic technique!
Remember combination testing!

Finally, there is all the test material. A
worst-case scenario is if the tester has
to admit that the test cannot be done or
has been wrong. A big problem is the test
environment, which should be prepared
and tested early. Waiting for the test
environment to work can kill any testing
effort (and everybody else will point
fingers!). After that, a defect may not be in
the object under test, but in the test data
or the output analysis. Be self-critical!

Test the test environment – well
before test execution!
Check you test data!

And finally, there is test automation.
A software product should be soft, i.e.
easy to change. Change, however, is
a risk. This means there is a need to
test after any change. Retesting and
regression testing may help. Running
tests by using robots helps regression
testing. But test automation is more than
that: Tools may read specifications and
automatically generate test cases. Tools
may automatically create environments.
Tools may be used to manage the testing
effort and the test material.

Automate testing tasks!
Be aware that there is more
automation than using test
robots!

9. Selected References

• Bach 2005: James Bach. A blog note
about possible causes of intermittent
bugs: http://blackbox.cs.fit.edu/blog/
james/

• Beizer 95: Boris Beizer, Black Box
Testing, John Wiley, 1995

• Better Software Magazine, www.
bettersoftware.com. www.stickyminds.
com Very practical!

• BS7925: British Standard: www.
testingstandards.co.uk/bs_7925-1.htm

• Copeland 2004: Lee Copeland, A
Practitioner’s Guide to Software Test
Design, Artech House, 2004.

• Crispin: Lisa Crispin, Tip House, Testing
Extreme Programming, Addison-Wesley,

2002, also http://home.att.net/~lisa.
crispin/XPTesterBOR.htm

• Gilb 2003: "Testers Rights: What Test
should demand from others, and why?".,
Keynote at EuroSTAR 2003

• GTB: German Testing Board: www.
german-testing-board.info The German
Testing Board developed an earlier version
of the current ISTQB certification.

• IEEE Standards: See www.ieee.org

• ISEB: Information Systems Exa-
minations Board of British Computer
Society. http://www.bcs.org/BCS/
Products/Qualifications/ISEB/ has run a
certification scheme for software testers
since 1999.

• ISTQB: www.istqb.org International
Software Testing Qualifications Board.
Develops and runs an international
software tester certification scheme.

• ISTQB Glossary: www.istqb.org/
fileadmin/media/glossary-current.pdf

• Kaner 99: C. Kaner, J. Falk, H. Q.
Nguyen, “Testing Computer Software
(3rd ed.), John Wiley, 1999.

• Kaner bugadvoc: A presentation about
how a tester should report issues. http://
www.kaner.com/pdfs/BugAdvocacy.pdf

• Myers 79: Glenford Myers: The Art of
Software Testing, John Wiley, 1979.

• Schaefer 2004; Hans Schaefer, “What
Software People should have known
about Software Testing 10 years ago -
What they definitely should know today.
Why they still don't know it and don't use
it”, EuroSTAR 2004

• About famous software errors:
http:/ /wired.com/news/technology/
bugs/0,2924,69355,00.html?tw=wn_
tophead_1

• About assumptions: “Never Assume”,
Sofie Nordhammen from St. Jude Medical
at EuroSTAR 2005. (“Knowing What’s
Right, Doing What’s Wrong”)

57

Software Testing

Efficient Testing with
All-Pairs

Author: Bernie Berger

basic

intermediate
advanced

About the author:

Acknowledgements: This presentation
draws upon material from various
sources, especially Lessons Learned
in Software Testing by Kaner, Bach
and Pettichord. Many thanks to them
for their time and advice. Thanks to the
AETG team who developed the all-pairs
approach. Thanks to the reviewers of
this paper for their insightful feedback:
Lawrence Nuanez, Michael Steinhart,
Dmitry Shchelokov

Introduction
If you’re a software tester who’s been in
the field for a few years, you may have
found yourself in one of the following
situations:

• You’re working as hard as you can to
find bugs in a huge system and you can’t
get to everything within the deadline.
You’ve already stumbled across some
good bugs, and you think there are more
in there, but the deadline comes and
the software is released. A week later, a
major client finds a serious problem with
the new release and lets everyone know
about it in an industry press release. You
begin thinking about what went wrong
and how you can improve your testing
coverage.
• You’re on a job interview, and the
person across the desk asks you how to
test a product, especially when there’s
too much to do in so little time.
• Your management has an elementary
understanding of software testing, and
as a result, sets unrealistic expectations
for you to “test everything.” They demand
100% coverage, including testing
all possible inputs, from all possible
interfaces, into all possible system paths,
into all possible outputs. You know
these are ridiculous demands, and you

start thinking about alternate testing
methods. (and/or alternate employment
opportunities).

Well, I’m able to cite these examples
because I’ve been in each of these
situations myself. A few years ago, I
started thinking about the Coverage
question of testing software – how can
you “test everything” without really testing
everything? How can you test efficiently:
to minimize testing efforts but maximie
testing results?

I found a method that I enjoy so much
that I use it and talk about it as often as
possible. I’ve seen this technique referred
to as “Pairwise Testing,” “Combinatorial
Method,” and “Orthogonal Arrays”
(actually, each of these is similar but
different), but I’ll use the term “All-Pairs.”

In All-Pairs test design, we are concerned
with variables of a system, and the
possible values each variable could take.
We will generate testcases by pairing
values of different variables. Don’t re-read
that last sentence -- generating testcases
using All-Pairs is easier than it sounds.
It’s like learning a new card game – at
first you have to learn the object of the
game, all the rules, and all the exceptions
to the rules, and then the tips and
strategies. But after you’ve played a few
times, it seems naturally easy to play. It’s
the same here. The best way to explain
how it works is with an example, so keep
reading…

Cartesian Products

A good starting point for a discussion
about all-pairs is with Cartesian Products.
A Cartesian product is a scenario in which
every unit of a group is matched with
every unit of every other group, so that
all combinations of units are achieved

across all groups.
For example, imagine the following
simple software application: A one-screen
GUI, with two drop down lists and an ‘OK’
button. List1 contains three values, ‘0’,
‘1’, and ‘2’; List2 contains two values,
‘10’, and ‘20’. The user selects one value
from each list, and after clicking OK the
product of the two values is displayed
on the screen. The variables and their

List1

0

1

2

List1

0

0

1

1

2

2

List2

10

20

List2

10

20

10

20

10

20

values look like this:
How would you test this program? How
many input combinations are there?
How long will it take to test all input
combinations?

There are 3x2= 6 possible combinations.
The 6 resulting combinations are a result
of the Cartesian product of the two inputs,

and would look like this:
Each value of each variable is matched so
that you have achieved all combinations.
You can execute these tests manually
in less than two minutes. Let’s add a

58

Software Testing

little more complexity; Version 2.0 of our
program has some new features:

List1 now contains integer values 0
through 9, and List2 was changed to
an input Textbox, allowing all integers
between 1 and 99. Additionally, there are
some new checkboxes. When checked,
checkbox1 multiplies the product by
-1 (makes it negative). Checkbox2 will
multiply the product by itself (gives the
product’s square). The variables and
values now look like this [Figure 1]

Now I ask the same questions: How
would you test this program? How many
combinations are there? How long will it
take to test all combinations?

Now there are 99x10x2x2=3,960 possible
valid input combinations. There are also
a host of invalid ones. (Note that the
Textbox introduces a new concept – the
possibility of invalid input. We will discuss
that soon.) What to do?

Don’t Use All Combinations

At the heart of all-pairs test design is
the idea that you don’t need to achieve
all combination testing. Let’s think about
all combinations for a minute, in terms of
finding bugs. In the previous example,
let’s say there is a bug where the program
freezes when List=0 and Checkbox1 is
on. That is, the program gets confused if
it has to multiply zero by -1. That’s not an
unrealistic possibility, right? Now, if you
were testing all combinations, how many
test cases would fail because of this one
bug?

99! That seems like a huge waste of
effort, no? The fact is , the value in the
Textbox is irrelevant to finding this bug.
You could have found this bug with only
one testcase – one that pairs a List=0
with a Checkbox=On – you don’t need
the extra 98 cases to find it.

What are you saying when you’re testing
all combinations? You’re saying that
you’re looking for a bug that will only
appear when one particular set of values
across all your variables fail. Let me say
that again in a different way: Each and
every variable in the application has to
be set to a particular value setting for
the bug to appear. If even one value was
changed, you wouldn’t get that same
bug. You’re looking for a very specific
set of conditions. Even in this nonsense

Figure 1

calculator example, you have a 1:3,960
chance of failure. Will there be a bug
that occurs once (and only once) out of
3,960 distinct input combinations? (And
if by chance, there happens to be one,
how low a priority do you think it would
be? Picture the bug report…If there were
20 variables in your application, a bug
description would look something like:
”When amount is 3, and security level
is set to high, and color is green, and
filter is on, and day is Tuesday, and, and,
and…<repeat 15 more times>… then the
calculated output is incorrect”)

In reality, all combinations is usually
overkill testing. I should say though,
that in mission-critical or safety-
critical applications, all combinations
might be a rational approach, such as
pharmaceuticals or military defense
systems, but that discussion is outside
our scope.

Let’s not be concerned with attempting to
test combinations of all variables. Most
bugs are found when only two variable
values conflict, not when all conflict at
the same time. In a recent NIST analysis
of medical software device failures, only
three of 109 failure reports indicated that
more than two conditions were required
to cause the failure (Wallace 2000). This
is the main idea of all-pairs. It is more
likely that you will find your bugs as a
result of two values conflicting. It is far
less likely that you need ALL variables in
a particular value formation. Don’t test all
combinations. Test all-pairs.

OK, so that’s the theory. How do you put
it into practice? How do you figure out
what pairs of variable values you have,
and how do you fit them into actionable
test scenarios?

Again, this is most easily explained with
an example.

All-Pairs Working Example
First, figure out what your parameters
(variables) are, and what each variable’s
possible values could be.

Organize this information in a
spreadsheet.

Next, simplify your values. Group them.
Use boundaries. For example, in the
Textbox, instead of listing every valid
value between 1 and 99, choose a smart
representative sample. (As a rule of
thumb, unless you have other specific
information, use min-1, min, min+1, max-1,
max, max+1.) [For more Information
about this technique, see the material on
Equivalence Class Partitioning in Testing
Computer Software]

In our example, the user has more
freedom to enter invalid choices in the
Textbox than in the drop down list. Realize
that when input is non-discrete, you can
still group it into values. For example,
value categories for freeform text might
be: all alpha chars, all numeric chars,
uppercase, lowercase, words in single
quotes, keywords, etc.

In our example, to keep it simple for now,
let’s reduce the 99 valid values plus the
infinite number of invalid values down
to three: any valid integer, any invalid
integer, and any alpha chars (which
would be invalid).

Let’s also reduce the 10 values in the
dropdown list to two: 0, and any other
value. Now our variables and values look
like this [Figure 2]

Figure 2

59

Software Testing

Next, put your variables across the
top header row in a table. Order your
variables so that the one with the most
number of values is first and the least is
last. Here, we put Textbox first because
it has 3 values. The other variables each
have 2 values. [Figure 3]

Now we will start filling in the table. Each
row of the table will represent a unique
test case/scenario. We will fill the table
column by column. Look at how many
values there are in column 2. Here, we
see that the List column has 2 values.
That’s how many times you will need
to insert the values of the first column,
Textbox. So we begin: [Figure 4]

We inserted six rows. The three values of
Textbox, each repeated twice. Also notice
that we skipped a row between each set
of values. This is important – we will get
to that soon.

Now, we fill in column 2. For each set
of values in column 1, we will put both
values of column 2 like so: [Figure 5]

So far, so good. We have paired values
across our two first variables. We can do
a quick check… Valid and 0, Valid and
Other. Invalid and 0, Invalid and Other.
Alpha and 0, Alpha and Other. It’s all
good.

Let’s continue on to the third variable.
Column three is the checkbox that
determines whether you want to multiply
the product by -1. There are two values,
on and off. Let’s put in the ons and offs
in column 3 and see what happens.
[Figure 6]

Let’s check to make sure we have all our
pairs between column 3 and column 2.
We have a 0 and On, but wait – there’s
no 0 and Off. We have an Other and Off,
but there’s no Other and On. Let’s swap
around the values in the second set in
the third column: [Figure 7]

There. Much better. We have a 0/On, 0/
Off, Other/On, and Other/Off. Notice that
the last set on and off are arbitrary – we
already have our pairs – and we don’t
care if the order is on/off or off/on.

Let’s continue to the fourth column.
This is the checkbox that multiplies the
product by itself. There are also two
settings, checked and unchecked. (I will
call the values of this checkbox checked
and unchecked so that they’re different

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

from the on and off in column 3, just for
the example. You can have values of
different variables called the same thing).
We have to enter values in such a way
that we get all our pairs.

Let’s give it a try: [Figure 8]

Once again, let’s check our pairs. We have
a 0/Checked and 0/Unchecked. We have
Other/Checked and Other/Unchecked.

60

Software Testing

Figure 9

Figure 10

Figure 11

Figure 12

Good, now let’s take a look at columns
3 and 4. We have On/Checked and On/
Unchecked, and Off/Checked and Off/
Unchecked. Not bad.

See, we fit every pair of values into six
cases. If we were testing all combs,
we would have 3x2x2x2=24. And if you
consider that we reduced 99 to 3 in
the Textbox, and 10 down to two in the
dropdown list, that’s an even bigger
savings.

Remember when I said that skipping
lines is important? Well, it is. Let’s say
Version 3.0 of our multiplier adds two
more checkboxes. Checkbox3 will give
the factorial value of the output, and
Checkbox4 will convert the output into
Hexadecimal notation. So we have to
add two more columns to our table and
enter our values. Let’s continue with
Checkbox3 in Column 5: [Figure 9]

Let’s make sure each column has at
least one pair with our newly added fifth
column. Looks like we did OK: Column
2 is OK: (0/Yes 0/No, Other/Yes, Other/
No), Column 3 is OK: (On/Yes, On/No,
Off/Yes, Off/No), and Column 4 is OK:
(Checked/Yes, Checked/No, Unchecked/
Yes, Unchecked/No). We’re golden.
Notice that the on off sequence in the
last set in the third column is no longer
arbitrary as it was when we had only
three columns filled in. We need it in that
order now for our new value pairs.

Here we go one more time with the last
column: [Figure 10]

And let’s see how we did:

• Column 2 is OK. We have a 0/Dec 0/
Hex Other/Dec Other/Hex.
• Column 3 is problematic: We do have an
On/Dec and Off/Hex, but we’re missing
On/Hex and Off/Dec pairs.
• Column 4 is OK: Checked/Dec, Checked/
Hex, Unchecked/Dec, Unchecked/Hex
• Column 5 is OK: We have a Yes/Dec,
Yes/Hex, No/Dec, and No/Hex.

This time, we can’t fit in our missing
pairs (On/Hex and Off/Dec) by swapping
around values. If we did, then other
pairs would get out of whack. Instead,
we simply add two more testcases that
contain these pairs. Hence, the blank
rows. [Figure 11]

The other variable values are purely
arbitrary. They need to be filled in with

some value, but we don’t care which
value, because we already have all our
pairs. Go ahead and fill in the empty
cells as you desire, and there you have
it -- all-pairs in eight cases instead of all
combinations in 96! [Figure 12]

I bet you’re saying, this is really great,
but do I have to go through this lengthy
exercise with all this checking and

swapping whenever I need an all-pairs
analysis? This example is not nearly as
complicated as the project I’m testing
back home. It will take forever to figure it
out with all my variables and values.

Is there a way to automate these
calculations? If only there were a free
downloadable script that calculated all-
pair combinations…

61

Software Testing

Introducing James Bach’s All-
Pairs Tool

Fortunately for you, James Bach has
already developed an all-pairs calculator.
And because James is such a nice guy,
it’s free to download from his website at
www.satisfice.com. He even gives you an
instruction manual, a sample example,
and the Perl source code. Let’s take a
quick look at it, and this time, let’s use a
real-life example.

You’re testing an online mortgage
application system. Using a web browser,
users surf to the site and enter personal
data into a series of forms. The system
processes the data and, based on the
data entered and the business logic
programmed into the application, the
system tells users what kind of mortgage
products they qualify for and what their
interest rate will be. Here’s what the
variable values look like: [Figure 13]

Description:

1 Location of property by US State
2 Amount borrowed.
3 Credit rating of applicant
4 Type of residence: Primary, Vacation,
Investment
5 Loan to Value: amount of loan as
percentage of value of property
6 No Income Verification
7 No Asset Verification
8 Closing Cost paid by Bank or
Customer
9 Lower rate for first year of loan, followed
by higher rate for subsequent years
10 Applicant is an employee of bank and
gets a discount

Figure 13

 There are 7x6x6x5x3x3x2x2x2x2x2x2
= 725,760 valid combinations. All-pairs
does it in 50. Here’s what to do:

1. Download and unzip ALLPAIRS from
www.saticefice.com
2. Organize your variable and value
matrix the way we did here and save
it in tab-delimited text format. You can
use Microsoft Excel and save as a .txt
file. Remember to keep the formatting
simple, and don’t use spaces.
3. From a DOS command line, call the
ALLPAIRS executable with the name of
the .txt file as an argument. Redirect the
output to an output file. For example,
ALLPAIRS.EXE MORTGAGE_IN.TXT >
MORTGAGE_OUT.XLS
That’s all there is to it.

Additional Considerations

Despite its ease of use, don’t think
that this tool is the silver bullet that will
magically fix all your testing problems.
You still need to think about how and
when using all-pairs as a test technique
is appropriate.

We already discussed briefly that it may
not be an appropriate method for all
situations. Here are some more points to
consider:
Don’t be tempted to find all-pairs of all
variables, just because you can.

Sometimes, a particular variable will or
will not exist, depending on the value
of another variable. For example, let’s
say the same system that processes
mortgages will also handle two other
home finance products: home equity

loans, and home equity lines of credit.
There might be different business rules
for processing line-of-credit applications.
Maybe the different products are not
offered in the same group of Regions, or
perhaps there are different categories for
LTV among the different home finance
products.

It wouldn’t make sense to add a “product”
variable with values “Standard Mortgage”,
“Home Equity Loan” and “Line of Credit”
into our all-pairs matrix because some
of the resulting pairs (and therefore,
testcases) would be undefined. If you did,
you might generate a testcase that pairs a
line-of-credit application with values that
are not available for that product. This is
different than negative testing, where you
would be trying an option that the system
doesn’t expect. Here, you couldn’t try that
option at all because it doesn’t exist. You
would be creating buggy testcases.

One solution is to create separate all-
pairs matrixes for the individual products.
In this example, you can create individual
all-pairs matrixes because the business
rules are so different for each Home
Equity product.

You won’t find all your bugs by using
this technique exclusively.

Remember, all-pairs only tests to see
whether any two variables conflict, not if
three or more conflict. Also, if you forget
to include a variable, or you decide to
exclude one from the matrix, its values
won’t be meshed with the rest of the
variables. Lastly, reducing the number of
values per variable (as we did with the
Textbox in the first example) could cause

62

Software Testing

an important pair to be missed.

In Lessons Learned in Software Testing,
Kaner, Bach, and Pettichord suggest to
add additional cases, especially if you
know of a specific combination that is
widely used or likely to be troublesome.

Additionally, try to introduce the all-pairs
technique to your current test process
gently. If your current testing process
isn’t awful, then don’t end it suddenly and
replace it only with All-Pairs. All-Pairs is
a great method to add to your testing
toolbox.

Don’t limit use of all-pairs to input
variables

Throughout this presentation, we talked
about variables as input to a system.
Remember, variables can also mean
test environments, paths through a
system, and outputs. A common usage
of all-pairs with non-input variables is in
setting up test environments for Internet
applications. Often, web apps need
to be tested on a host of OS/Browser

combinations. Nguyen illustrates this
with an all-pairs example in Testing
Applications on the Web.

Conclusion

Rooted in mathematical theory, the all-
pairs technique is a thoughtful method
when test planning. Download the all-
pairs calculator and try it out. Using it, you
can quickly generate test cases that have
a good chance of finding bugs, instead
of mindlessly copying and pasting text
into testcase templates. The next time
someone asks you to test “everything,”
or you’re at an interview and you want
to talk about test efficiency, remember
this presentation and tell them about the
benefits of the all-pairs approach.

References

1. Lessons Learned in Software Testing,
Kaner, Bach, Pettichord

2. Testing Applications on the Web,
Nguyen

3. Testing Computer Software, Kaner,
Nguyen, Falk

4. “The Combinatorial Design Approach
to Automatic Test Generation”, Cohen,
Dalal, Parelius, and Patton

5. “The AETG System: An Approach to
Testing Based on Combinatorial Design”
Cohen, Dalal, Fredman, Patton

6. “Orthogonally Speaking”, Dustin,
STQE Magazine 2001

7. “Orthogonal Array Testing Strategy
(OATS) Technique”, Harrell

8. “Converting System Failure Histories
into Future Win Situations”, Wallace and
Kuhn

9. “ALLPAIRS”, Bach

10. “A Dimensionality Model Approach
to Testing and Imporving Software
Robustness”, Koopman, Pan, and
Siewiorek

63

Software Testing

The Case for Peer Review
The $1 billion bug and why no one talks
about peer code review.

basic

intermediate
advancedReference:

This article is a single chapter of the book
“Best Kept Secrets of Peer Code Review”
by SmartBear Software. A compilation of
10 practical essays from industry experts,
this book includes details of the largest
case study on peer code review and gives
specific techniques for effective reviews
that your team can use right away.

The full book can be accessed from
the following link: http://smartbear.com/
codecollab-code-review-book.php

It was only supposed to take an hour.
The bad news was that we had a stack of
customer complaints. The latest release

Author: SmartBear Software

had a nasty bug that slipped through QA.
The good news was that some of those
complaints included descriptions of the
problem – an unexpected error dialog
box – and one report had an attached
log file. We just had to reproduce the
problem using the log and add this case
to the unit tests. Turn around a quick
release from the stable branch and we’re
golden.

Of course that’s not how it turned out.
We followed the steps from the log and
everything worked fine. QA couldn’t
reproduce the problem either. Then
it turned out the error dialog was a red
herring – the real error happened long
before the dialog popped up, somewhere
deep in the code.

A week later with two developers on the
task we finally discovered the cause of the
problem. Once we saw the code it was
painfully obvious – a certain subroutine
didn’t check for invalid input. By the time
we got the fix out we had twenty more
complaints. One potential customer that
was trialing the product was never heard
from again.

All over a simple bug. Even a cursory
glance over the source code would have
prevented the wasted time and lost
customers.

The worst part is that this isn’t an isolated
incident. It happens in all development
shops. The good news? A policy of peer
code review can stop these problems at
the earliest stages, before they reach the
customer, before it gets expensive.

The case for review: Find bugs
early & often

One of our customers set out to test

exactly how much money the company
would have saved had they used peer
review in a certain three-month, 10,000-
line project with 10 developers. They
tracked how many bugs were found by
QA and customers in the subsequent six
months. Then they went back and had
another group of developers peer-review
the code in question. Using metrics from
previous releases of this project they
knew the average cost of fixing a defect
at each phase of development, so they
were able to measure directly how much
money they would have saved.

The result: Code review would have saved
half the cost of fixing the bugs. Plus they
would have found 162 additional bugs.

Why is the effect of code review so
dramatic? A lack of collaboration in the
development phase may be the culprit.
With requirements and design you
always have meetings. You bring in input
from customers, managers, developers,
and QA to synthesize a result. You do
this because mistakes in requirements
or architecture are expensive, possibly
leading to lost sales. You debate the
relative priorities, difficulty, and long-term
merits of your choices.

Saving $150k: A real-world
case study

Not so when actually writing the source
code. Individual developers type away at
the tasks assigned to them. Collaboration
is limited to occasional whiteboard
drawings and a few shared interfaces.
No one is catching the obvious bugs; no
one is making sure the documentation
matches the code.

Peer code review adds back the
collaborative element to this phase of

64

Software Testing

the software development process.

Consider this: Nothing is commercially
published without corrections from
several professional editors. Find the
acknowledgments in any book and you’ll
find reviewers who helped “remove
defects.” No matter how smart or
diligent the author, the review process
is necessary to produce a high-quality
work. (And even then, what author
hasn’t found five more errors after seeing
the first edition?)

Why do we think it’s any different in

software development? Why should we
expect our developers to write pages
of detailed code (and prose) without
mistakes?

We shouldn’t. If review works with novels
and software design it can also work
when writing code. Peer code review
adds a much-needed collaborative
element to the development phase of
the software development process.

The $1 billion bug

In 2005, Adobe attributed $1 billion in

revenue to the PDF format1.

Why is PDF worth $1 billion? Because
it's the one format that everyone can
view and print2. It just works. If it loses
that status, Adobe loses the edifice built
on that format, to which the fiscal year
2005 income statement attributes $1
billion.

Now imagine you are a development
manager for Acrobat Reader, Windows
Edition. The next major release is due
in 9 months and you are responsible
for adding five new features. You know
how much is riding on Reader and how
much revenue – and jobs – depends on
its continued success.

So now the question: Which of those five
features is so compelling, it would be
worth introducing a crash-bug in Reader
just to have that feature?

Answer: None!

Nothing is worth losing your position in
the industry. But you still must implement
new features to keep the technology
fresh and competition at bay. So what
techniques will you employ in your
development process to ensure that no
bugs get introduced?

Answer: Everything. Including code
review.

Only code review will ensure that this
code base – already over ten years old
– remains maintainable for the next ten.
Only code review will ensure that new
hires don’t make mistakes that veterans
would avoid. And every defect found in
code review is another bug that might
have gotten through QA and into the
hands of a customer.

There are many organizations in this
position: The cost of losing market
position is unthinkably large, so the cost
of every defect is similarly large. In fact,
any software company with a mature
product offering is almost certainly in this
position.

This doesn’t mean they implement
code review no matter what the costs;
developer time is still an expensive
commodity. It does mean that they’re
taking the time to understand this process
which, if implemented properly, is a
proven method for significantly reducing
the number of delivered bugs, keeping

65

Software Testing

code maintainable, and getting new hires
productive quickly and safely.

But you don’t need to have $1 billion at
stake to be interested in code quality
and maintainability. Delivering bugs
to QA costs money; delivering bugs to
customers costs a lot of money and loss
of goodwill.

But if code review works this well, why
don’t more people talk about it? Is
anyone really doing it?

Why code review is a secret

In 1991, OOP was the Next Big Thing.
But strangely, at OOPSLA there were
precious few papers, light on content,
and yet the attendees admitted to each
other in hallway talk that their companies
were fervently using the new techniques
and gaining significant improvements in
code reusability and in breaking down
complex systems.

So why weren't they talking publicly?
Because the development groups that
truly understood the techniques of OOP
had a competitive advantage. OOP
was new and everyone was learning
empirically what worked and what didn't;
why give up that hard-earned knowledge
to your competitors?

A successfully-implemented code review
process is a competitive advantage. No
one wants to give away the secret of how
to release fewer defects efficiently.

When we got started no one was talking
about code review in the press, so we
didn't think many people were doing it.
But our experience has made it clear
that peer code review is widespread at
companies who are serious about code
quality.

But the techniques are still a secret!3
Peer code review has the potential
to take too much time to be worth the
gain in bug-fixing, code maintainability,
or in mentoring new developers. The
techniques that provide the benefits of
peer code review while mitigating the
pitfalls and managing developers’ time
are competitive advantages that no one
wants to reveal.

Unfortunately for these successful
software development organizations,
we make a living making code review
accessible and efficient for everyone.
And that’s what this book is about.

I’m interested. What next?

So code review works, but what if
developers waste too much time doing
it? What if the social ramifications
of personal critiquing ruin morale?
How can review be implemented in a
measurable way so you can identify
process problems?

We cover case studies of review in the
real world and show which conclusions
you can draw from them (and which you
can’t). We give our own case study of

2500 reviews. We give pros and cons for
the five most common types of review.
We explain how to take advantage of the
positive social and personal aspects of
review as well as ways managers can
mitigate negative emotions that can
arise. We explain how to implement
a review within a CMMI/PSP/TSP
context. We give specific advice on
how to construct a peer review process
that meets specific goals. Finally, we
describe a tool that our customers have
used to make certain kinds of reviews as
painless and efficient as possible.

Code review can be practical, efficient,
and even fun.

1 Income primarily from the “Adobe Intelligent
Documents” division, defined with financial
figures in Adobe Systems Incorporated Letter to
Stockholders FY 2005.

2 “At the heart of our enterprise strategy are
the free and ubiquitous Adobe Reader software
and Adobe Portable Document Format (PDF).
Adobe Reader enables users to view, print, and
interact with documents across a wide variety of
platforms.” Ibid, page 6.

3 Some companies have published case
studies on effectiveness of heavyweight
inspection processes. In our experience, the
overwhelming majority of code review processes
are not heavyweight, and those studies are often
statistically-insignificant. Details on this and our
own case study are given in the essays, “Brand
New Information” and “Code Review at Cisco
Systems.”

66

Software Testing

Five Types of Review
Pros and cons of formal,
over-the-shoulder, e-mail pass-around, pair-
programming, and tool-assisted reviews.

basic

intermediate
advancedReference:

This article is a single chapter of the book
“Best Kept Secrets of Peer Code Review”
by SmartBear Software. A compilation of
10 practical essays from industry experts,
this book includes details of the largest
case study on peer code review and gives
specific techniques for effective reviews
that your team can use right away.

The full book can be accessed from
the following link: http://smartbear.com/
codecollab-code-review-book.php
There are many ways to skin a cat. I can

Author: SmartBear Software

think of four right off the bat. There are
also many ways to perform a peer review,
each with pros and cons.

Formal inspections

For historical reasons, “formal” reviews
are usually called “inspections.” This
is a hold-over from Michael Fagan’s
seminal 1976 study at IBM regarding the
efficacy of peer reviews. He tried many
combinations of variables and came up
with a procedure for reviewing up to 250
lines of prose or source code. After 800
iterations he came up with a formalized
inspection strategy and to this day you
can pay him to tell you about it (company
name: Fagan Associates). His methods
were further studied and expanded upon
by others, most notably Tom Gilb and
Karl Wiegers.

In general, a “formal” review refers
to a heavy-process review with three
to six participants meeting together
in one room with print-outs and/or a
projector. Someone is the “moderator”
or “controller” and acts as the organizer,
keeps everyone on task, controls the
pace of the review, and acts as arbiter
of disputes. Everyone reads through the
materials beforehand to properly prepare
for the meeting.

Each participant will be assigned a specific
“role.” A “reviewer” might be tasked with
critical analysis while an “observer” might
be called in for domain-specific advice or
to learn how to do reviews properly. In
a Fagan Inspection, a “reader” looks at
source code only for comprehension –
not for critique – and presents this to the
group. This separates what the author
intended from what is actually presented;

often the author himself is able to pick out
defects given this third-party description.

When defects are discovered in a formal
review, they are usually recorded in great
detail. Besides the general location of the
error in the code, they include details such
as severity (e.g. major, minor), type (e.g.
algorithm, documentation, data-usage,
error-handling), and phase-injection
(e.g. developer error, design oversight,
requirements mistake). Typically this
information is kept in a database so
defect metrics can be analyzed from
many angles and possibly compared to
similar metrics from QA.

Formal inspections also typically record
other metrics such as individual time spent
during pre-meeting reading and during the
meeting itself, lines-of-code inspection
rates, and problems encountered with
the process itself. These numbers and
comments are examined periodically in
process-improvement meetings; Fagan
Inspections go one step further and
requires a process-rating questionnaire
after each meeting to help with the
improvement step.

Formal inspections’ greatest asset is also
its biggest drawback: When you have
many people spending lots of time reading
code and discussing its consequences,
you are going to identify a lot of defects.
And there are plenty of studies that show
formal inspections can identify a large
number of problems in source code.

But most organizations cannot afford to
tie up that many people for that long.
You also have to schedule the meetings
– a daunting task in itself and one that
ends up consuming extra developer
time1. Finally, most formal methods

67

Software Testing

Figure 1 Typical workflow for a “formal” inspection. Not shown are the
artifacts created by the review: The defect log, meeting notes, and metrics
log. Some inspections also have a closing questionnaire used in the follow-
up meeting.

require training to be effective, and this
is an additional time and expense that
is difficult to accept, especially when
you aren’t already used to doing code
reviews.

Many studies in the past 15 years have
come out demonstrating that other
forms of review uncover just as many
defects as do formal reviews but with
much less time and training2. This result
– anticipated by those who have tried
many types of review – has put formal
inspections out of favor in the industry.

After all, if you can get all the proven

benefits of formal inspections but occupy
1/3 the developer time, that’s clearly
better.

So let’s investigate some of these other
techniques.

Over-the-shoulder reviews

This is the most common and informal
of code reviews. An “over-the-shoulder”
review is just that – a developer standing
over the author’s workstation while the
author walks the reviewer through a set
of code changes.

Typically the author “drives” the review
by sitting at the keyboard and mouse,
opening various files, pointing out the
changes and explaining why it was
done this way. The author can present
the changes using various tools and
even run back and forth between
changes and other files in the project.
If the reviewer sees something amiss,
they can engage in a little “spot pair-
programming” as the author writes the
fix while the reviewer hovers. Bigger
changes where the reviewer doesn’t
need to be involved are taken off-line.

With modern desktop-sharing software
a so-called “over-the-shoulder” review
can be made to work over long
distances. This complicates the process
because you need to schedule these
sharing meetings and communicate
over the phone. Standing over a
shoulder allows people to point, write
examples, or even go to a whiteboard
for discussion; this is more difficult over
the Internet.

The most obvious advantage of over-
the-shoulder reviews is simplicity in
execution. Anyone can do it, any
time, without training. It can also be
deployed whenever you need it most
– an especially complicated change or
an alteration to a “stable” code branch.

As with all in-person reviews, over-the-
shoulders lend themselves to learning
and sharing between developers and
get people to interact in person instead
of hiding behind impersonal email and
instant-messages. You naturally talk
more when you can blurt out an idea
rather than adding some formal “defect”
in a database somewhere.

Unfortunately, the informality and
simplicity of the process also leads to
a mountain of shortcomings. First, this
is not an enforceable process – there’s
nothing that lets a manager know
whether all code changes are being
reviewed. In fact, there are no metrics,
reports, or tools that measure anything
at all about the process.

Second, it’s easy for the author
to unintentionally miss a change.
Countless times we’ve observed a
review that completes, the author
checks in his changes, and when he
sees the list of files just checked in he
says “Oh, did I change that one?” Too
late!

68

Software Testing

Figure 2 A typical Over-the-shoulder code walk-through process. Typically
no review artifacts are created.

Third, when a reviewer reports defects
and leaves the room, rarely does the
reviewer return to verify that the defects
were fixed properly and that no new
defects were introduced. If you’re not
verifying that defects are fixed, the value
of finding them is diminished.

There is another effect of over-the-
shoulder reviews which some people
consider to be an advantage, but others
a drawback. Because the author is
controlling the pace of the review, often
the reviewer is led too hastily through the
code. The reviewer might not ponder
over a complex portion of code. The
reviewer doesn’t get a chance to poke
around in other source files to confirm
that a change won’t break something
else. The author might explain something
that clarifies the code to the reviewer,
but the next developer who reads that
code won’t have the advantage of that
explanation unless it is encoded as a

comment in the code. It’s difficult for a
reviewer to be objective and aware of
these issues while being driven through
the code with an expectant developer
peering up at him.

For example, say the author was tasked
with fixing a bug where a portion of a
dialog was being drawn incorrectly.
After wrestling with the Windows GUI
documentation, he finally discovers an
undocumented “feature” in the draw-text
API call that was causing the problems.
He works around the bug with some
new code and fixes the problem. When
the reviewer gets to this work-around, it
looks funny at first.

“Why did you do this?” asks the reviewer.
“The Windows GUI API will do this for
you.”

“Yeah, I thought so too,” responds the
author, “but it turns out it doesn’t actually

handle this case correctly. So I had to
call it a different way in this case.”

 It’s all too easy for the reviewer to accept
the changes. But the next developer
that reads this code will have the same
question and might even remove the
work-around in an attempt to make the
code cleaner. “After all,” says the next
developer, “the Windows API does this
for us, so no need for this extra code!”

On the other hand, not all prompting
is bad. With changes that touch many
files it’s often useful to review the files
in a particular order. And sometimes
a change will make sense to a future
reader, but the reviewer might need an
explanation for why things were changed
from the way they were.

Finally, over-the-shoulder reviews by
definition don’t work when the author
and reviewer aren’t in the same building;
they probably should also be in nearby
offices. For any kind of remote review,
you need to invoke some electronic
communication. Even with desktop-
sharing and speakerphones, many of
the benefits of face-to-face interactions
are lost.

E-mail pass-around reviews

E-mail pass-around reviews are the
second-most common form of informal
code review and the technique preferred
by most open-source projects. Here,
whole files or changes are packaged up
by the author and sent to reviewers via
e-mail. Reviewers examine the files, ask
questions and discuss with the author
and other developers, and suggest
changes.

The hardest part of the e-mail pass-
around is in finding and collecting the
files under review. On the author’s end,
he has to figure out how to gather the
files together. For example, if this is a
review of changes being proposed to
check into version control, the user has
to identify all the files added, deleted,
and modified, copy them somewhere,
then download the previous versions of
those files (so reviewers can see what
was changed), and organize the files so
the reviewers know which files should
be compared with which others. On the
reviewing end, reviewers have to extract
those files from the e-mail and generate
differences between each.

69

Software Testing

The version control system can be of
some assistance. Typically that system
can report on which files have been
altered and can be made to extract
previous versions. Although some
people write their own scripts to collect
all these files, most use commercial tools
that do the same thing and can handle
the myriad of corner-cases arising from
files in various states and client/server
configurations.

The version control system can also
assist by sending the e-mails out
automatically. For example, a version
control server-side “check-in” trigger can
send e-mails depending on who checked
in the code (e.g. the lead developer of
each group reviews code from members
of that group) and which files were
changed (e.g. some files are “owned”
by a user who is best-qualified to review
the changes). The automation is helpful,
but for many code review processes you
want to require reviews before check-in,
not after.

Like over-the-shoulder reviews, e-mail
pass-arounds are easy to implement,
although more time-consuming because
of the file-gathering. But unlike over-the-
shoulder reviews, they work equally well
with developers working across the hall
or across an ocean. And you eliminate
the problem of the authors coaching the
reviewers through the changes.

Another unique advantage of e-mail pass-
arounds is the ease in which other people
can be brought into the review. Perhaps
there is a domain expert for a section
of code that a reviewer wants to get an
opinion from. Perhaps the reviewer wants
to defer to another reviewer. Or perhaps
the e-mail is sent to many people at once,
and those people decide for themselves
who are best qualified to review which
parts of the code. This inclusiveness is
difficult with in-person reviews and with
formal inspections where all participants
need to be invited to the meeting in
advance.

Yet another advantage of e-mail pass-
arounds is they don’t knock reviewers out
of “the zone.” It’s well established that it
takes a developer 15 minutes to get into
“the zone” where he is immersed in his
work and is highly productive3. Even just
asking a developer for a review knocks
him out of the zone – even if the response
is “I’m too busy.” With e-mails, reviewers
can work during a self-prescribed break

Figure 3 Typical process for an e-mail pass-around review for code already
checked into a version control system. These phases are not this distinct in
reality because there’s no tangible “review” object.

so they can stay in the zone for hours at
a time.

There are several important drawbacks
to the e-mail pass-around review method.
The biggest is that for all but the most trivial
reviews, it can rapidly become difficult to
track the various threads of conversation
and code changes. With several
discussions concerning a few different
areas of the code, possibly inviting other
developers to the fray, it’s hard to track
what everyone’s saying or whether the
group is getting to a consensus.

This is even more prominent with over-
seas reviews; ironic since one of the
distinct advantages of e-mail pass-
arounds is that they can be done with
remote developers. An over-seas review
might take many days as each “back and
forth” can take a day, so it might take
five days to complete a review instead
of thirty minutes. This means many
simultaneous reviews, and that means
even more difficulties keeping straight

the conversations and associated code
changes.

Imagine a developer in Hyderabad
opening Outlook to discover 25 emails
from different people discussing aspects
of three different code changes he’s made
over the last few days. It will take a while
just to dig though that before any real work
can begin.

For all their advantages over over-the-
shoulder reviews, e-mail pass-arounds
share some disadvantages. Product
managers are still not sure whether all
code changes are being reviewed. Even
with version control server-side triggers,
all you know is that changes were sent out
– not that anyone actually looked at them.
And if there was a consensus that certain
defects needed to be fixed, you cannot
verify that those fixes were made properly.
Also there are still no metrics to measure
the process, determine efficiency, or
measure the effect of a change in the
process.

70

Software Testing

Figure 4 Typical process for an e-mail pass-around review for code already
checked into a version control system. These phases are not this distinct in
reality because there’s no tangible “review” object.

With e-mail pass-arounds we’ve seen
that with the introduction of a few tools
(i.e. e-mail, version control client-side
scripts for file-collection and server-side
scripts for workflow automation) we were
able to gain several benefits over over-
the-shoulder reviews without introducing
significant drawbacks. Perhaps by
the introduction of more sophisticated,
specialized tools we can continue to add
benefits while removing the remaining
drawbacks.

Tool-Assisted reviews

This refers to any process where
specialized tools are used in all aspects
of the review: collecting files, transmitting
and displaying files, commentary and
defects among all participants, collecting
metrics, and giving product managers
and administrators some control over the
workflow.

There are several key elements that
must be present in a review tool if it is
going to solve the major problems with
other types of review4:

Automated File Gathering

As we discussed in the e-mail pass-
around section, you can’t have developers
spending time manually gathering files
and differences for review. A tool must
integrate with your version control system
to extract current and previous versions
so reviewers can easily see the changes
under review.

Ideally the tool can do this both with local
changes not yet checked into version
control and with already-checked-in
changes (e.g. by date, label, branch,
or unique change-list number). Even
if you’re not doing both types of review
today, you’ll want the option in the
future.

Combined Display: Differences,
Comments, Defects

One of the biggest time-sinks with
any type of review is in reviewers and
developers having to associate each sub-
conversation with a particular file and line
number. The tool must be able to display

files and before/after file differences in
such a manner that conversations are
threaded and no one has to spend time
cross-referencing comments, defects,
and source code.

Automated Metrics Collection

On one hand, accurate metrics are the
only way to understand your process and
the only way to measure the changes
that occur when you change the process.
On the other hand, no developer wants
to review code while holding a stopwatch
and wielding line-counting tools.

A tool that automates collection of
key metrics is the only way to keep
developers happy (i.e. no extra work for
them) and get meaningful metrics on
your process. A full discussion of review
metrics and what they mean appears in
the “Measurement and Improvement”
essay, but your tool should at least collect
these three rates: kLOC/hour (inspection
rate), defects/hour (defect rate), and
defects/kLOC (defect density).

Review Enforcement

Almost all other types of review suffer
from the problem of product managers
not knowing whether developers are
reviewing all code changes or whether
reviewers are verifying that defects
are indeed fixed and didn’t cause new
defects. A tool should be able to enforce
this workflow at least at a reporting level
(for passive workflow enforcement) and
at best, at the version control level (with
server-side triggers that enforce workflow
at the version control level).

Clients and Integrations

Some developers like command-line
tools. Others prefer integrations with
IDE’s and version control GUI clients.
Administrators like zero-installation web
clients. It’s important that a tool supports
many ways to read and write data in the
system.

Developer tools also have a habit of
needing to be integrated with other tools.
Version control clients are inside IDE’s.
Issue-trackers are correlated with version
control changes. Similarly, your review
tool needs to integrate with your other
tools – everything from IDE’s and version

71

Software Testing

control clients to metrics and reports. A
bonus is a tool that exposes a public API
so you can make customizations and
detailed integrations yourself.

If your tool satisfies this list of
requirements, you’ll have the benefits of
e-mail pass-around reviews (works with
multiple, possibly-remote developers,
minimizes interruptions) but without the
problems of no workflow enforcement,
no metrics, and wasting time with file/
difference packaging, delivery, and
inspection.

The drawback of any tool-assisted review
is cost – either in cash for a commercial
tool or as time if developed in-house.
You also need to make sure the tool is
flexible enough to handle your specific
code review process; otherwise you
might find the tool driving your process
instead of vice-versa.

Although tool-assisted reviews can solve
the problems that plague typical code
reviews, there is still one other technique
that, while not often used, has the
potential to find even more defects than
standard code review.

Pair - Programming

Most people associate pair-programming
with XP5 and agile development in
general, but it’s also a development
process that incorporates continuous
code review. Pair-programming is two
developers writing code at a single
workstation with only one developer
typing at a time and continuous free-form
discussion and review.

Studies of pair-programming have shown

it to be very effective at both finding bugs
and promoting knowledge transfer. And
some developers really enjoy doing it.

There’s a controversial issue about
whether pair-programming reviews
are better, worse, or complementary to
more standard reviews. The reviewing
developer is deeply involved in the code,
giving great thought to the issues and
consequences arising from different
implementations. On the one hand this
gives the reviewer lots of inspection time
and a deep insight into the problem at
hand, so perhaps this means the review
is more effective. On the other hand,
this closeness is exactly what you don’t
want in a reviewer; just as no author
can see all typos in his own writing, a
reviewer too close to the code cannot
step back and critique it from a fresh
and unbiased position. Some people
suggest using both techniques – pair-
programming for the deep review and a
follow-up standard review for fresh eyes.
Although this takes a lot of developer
time to implement, it would seem that
this technique would find the greatest
number of defects. We’ve never seen
anyone do this in practice.

The single biggest complaint about pair-
programming is that it takes too much
time. Rather than having a reviewer
spend 15-30 minutes reviewing a change
that took one developer a few days to
make, in pair-programming you have two
developers on the task the entire time.

Some developers just don’t like pair-
programming; it depends on the
disposition of the developers and who is
partnered with whom. Pair-programming
also does not address the issue of remote
developers.

A full discussion of the pros and cons of
pair-programming in general is beyond
our scope.

Conclusion

Each of the five types of review is useful in
its own way. Formal inspections and pair-
programming are proven techniques but
require large amounts of developer time
and don’t work with remote developers.
Over-the-shoulder reviews are easiest
to implement but can’t be implemented
as a controlled process. E-mail pass-
around and tool-assisted reviews strike a
balance between time invested and ease
of implementation.

And any kind of code review is better
than nothing.

1 See the Votta 1993 case study detailed in
“Brand New Information”.

 2 See the case study survey elsewhere in “Code
Review at Cisco Systems”.

3 For a fun read on this topic, see “Where do
These People Get Their (Unoriginal) Ideas?”
Joel On Software. Joel Spolsky, Apr 29, 2000.

4 In the interest of full-disclosure, Smart Bear
Software, the company that employs the author
of this essay, sells a popular peer code review
tool called Code Collaborator for exactly this
purpose. This product is described in the “Code
Collaborator” essay in this collection; this section
will discuss general ways in which tools can
assist the review process.

5 Extreme Programming is perhaps the most
talked-about form of agile development. Learn
more at http://www.extremeprogramming.org.

72

Software Testing

Confrontation of
developers and testers

Author: Marina Lager and Andrey Konushin basic

intermediate
advanced

About the authors:

Andrey Konushin -
Expert in software testing
and quality assurance.
ISTQB Certified Tester,
Advanced Level.

Master of techniques
and technologies in
informatics and computer engineering,
Vladimir State University, Russia.
His main research interests include
information management and system
analysis both in software testing and
related fields.

Quality assurance expert and test
manager at software development
companies with big experience in tens of
projects. CEO of “Knowledge Department
Russia” – a coaching and consulting
company, offering its services worldwide.

Since 2006 senior lecturer at Information
Systems & Information Management
chair of Vladimir State University.
Andrey developed and implemented the
“Software testing foundations” course
for the University based on ISTQB
Foundation Level Syllabus.

One of the founders of the Russian
Software Testing Qualifications Board.
Since 2006 he is the President of the
RSTQB.

Marina Lager - 24 years
old.

Specialist in software
testing. Degreed spe-
cialist in informatics and
computer engineering,
Vladimir State University,
Russia.

Since 2007: Software test engineer at
Inreco LAN, a software development
company (http://inrecolan.com).
Since 2010: Acting Test Lead of Inreco
LAN

Her main research interests include
project management and communication
between team members in software
development.

In the software development process
different professionals are involved:
managers, analysts, developer and
testers. But they are primarily people who
communicate among themselves, who
have formed a definite relation to each
other, and who have work on a common
project from day to day. But sometimes
their attitude is much like confrontation.
So, in order...

Developer (or programmer) - a software
development specialist. Usually, the
word "programmer" means person who
specializes in writing the source code
following the desired specifications.

Tester - a specialist, professional
responsibilities of whom is to detect,
localize, describe and track errors in the
software. Thus, the task of the tester - a
search of defects (bugs), which developers
had made.

But is there a real need of testers, when
developers can check their work?

The most known and popular testing
certification scheme – ISTQB (International
Software Testing Qualifications Board) –
defines the following: “A way of thinking,
needed in the process of testing or review,
differs from the ways of thinking needed

for programming and analysis. With the
right thinking, the developers can test their
own code. But division of responsibilities is
usually done in order to help focus different
efforts and provide additional benefits,
such as an independent opinion of the
trained professionals in the testing.”

Definition of independent testing is given
in the ISTQB glossary: “Independence of
testing is separation of responsibilities,
which encourages the accomplishment of
objective testing.”

It also defines several levels of
independence:
• Tests are designed by the person
who wrote the program (a low level of
independence).
• Tests are designed by another person
(for example, from the development
team).
• Tests are designed by person from
another organizational group (e.g., an
independent team of testers).
• Tests are designed by person from
another organization or company (e.g.,
outsourcing or certification by another
company).

The last two levels of independence are
more effective than the first. Finding of
program crashes during testing may be
perceived as criticism of the product or
author. Therefore, testing is often seen
as a destructive activity, even if it is
constructive in terms of risk management.
As a consequence, sometimes
programmers and testers are, to put it
mildly, not friendly.

For example, the programmer has
implemented its mission and went to
home happy. But next morning he finds
many error reports in his implementation,
which had taken much time and effort.
Few of us want to admit their mistakes.
Sometimes programmers generally think

73

Software Testing

that errors occur because of testers. Even
questions like this may appear: "When
testers will stop to find bugs?!". Of course,
the defects do not arise because of the
testers. Precisely the contrary, testing
helps to improve the quality of software,
but some people forget this, and begin to
utter unpleasant words to tester, to write
angry emails, reject defects, etc.

Now let’s try to look at this situation
from the other side. Most testers feel
themselves just inferior people in the
team. Wages of programmers usually
higher. If the software works well, the
developers receive the award, because
it is implemented. And if a product works
poorly, the blame can be at testers,
because they had inspected or tested not
enough well.

Add to this discontented programmers
who constantly reject defects, provide
functionality at the last moment, and there
is no enough time for full inspection, the
desire to remain true to profession of a
tester is approaching to zero.

But software development process
requires both developers and testers,
and it is important that they have good
working relations. To do this, of course,
some efforts should be made.

Testers, to live peacefully with
the programmers, need to learn
understanding, and seek an individual
approach. But besides this, tester must
have a certain set of qualities to be
respected by colleagues:
• Attention, because problem can arise
not only due to the fact that the code has
errors inside, but because tester does
something incorrectly.
• Observation, as it is necessary to notice
the slightest flaws in the program.
• Pedantry, as it is necessary to conduct
any test carefully and not once.
• Assiduity, as it is necessary to find
a mistake, try to discover its cause,
describe, and then double-check.
• Tact, as indication of the error must be as
gently as possible, specify only the facts
and not give any personal assessment.
• Persistence, as it is often necessary
to defend the rightness, to prove the
existence of the defect (but "not to bend
the stick" is important, too).
• Creative thinking that would come up
with new tests.
• Communication skills, because of the
need to collaborate within the testing
team, in addition to communicate with the

developers, authorities, and sometimes
directly with customers.
• Desire to learn, because you need to know
as much as possible about the product,
the technology of its development, as well
as to explore new means of testing.

Also the search for faults in the system
requires curiosity, professional pessimism
and experience which is based on an
intuitive search for errors.
As a testing professionals we can
give a few tips to all testers, especially
youngest:
• Note that you and developer perceive
the software in various ways: programmer
usually focuses on a specific module
(functions, parts), but you can imagine
the entire system (as interacting
components).
• Your attitude should be critical, in order
to find as many mistakes as possible.
• Describing defects, try to gently, step by
step explain how to reproduce the bug
(if bug is not reproduced regularly, make
sure you mentioned it).
• Insist on providing you with all possible
documentation, as this will increase the
efficiency of your work.
• Do not think of yourself as of worse or
better than other team members.
• Work with great responsibility.
• Do not demand too much, i.e. if you do
not have computer of the last generation,
then work with what you have, but keep
in mind the possible problems when
planning the test.
• Focus on the software product, rather
than the individual programmer, manager,
analytics, etc.
• Do not forget that developers are
person with their advantages and
disadvantages.
• Remember that developer usually is
committed to create a software that
works in general. Incorrect operation of
small functions, misspelling, etc. for him
is not errors. In this case, try calmly and
convincingly prove that it is still lack and
developer needs to fix it.
But not only the tester must exert efforts
and establish normal relations with
developers. For developers it is desirable
to keep in mind the following facts:
• The task of a tester is to find a mistake,
testers think critically. But it does not mean
to hurt you, it's the characteristic that is
essential for creating quality software
product.
• Labor of tester is complicated too, it
is intellectual activity, which deserves
respect. Tester wants the project to be
successful, and not trying to point out your

shortcomings. Tester is trying to address
the problem from the point of view of the
user.
• Before giving tasks and modules for
testing, you should check them yourself,
at least superficially - it will shorten the
development time of the product as a
whole. You will demonstrate yourself as
a competent specialist, and possibly your
relationship with testers will improve.
• For the success of the team, it is
preferable in a timely manner to correct
defects and to put them into the database
with relevant information. Errors may
block other functional verification, as well
as correcting some defects may lead to
others.
• If troubles, ridicule, accusations, etc., are
expected for error reports, then people
may not notice errors or do not make
record on them (if the report is wrong, just
tell testers how best to execute it, and not
scold them).
• Tester sometimes can make mistakes,
like all people. Do not judge them for it
too seriously.

In relations between testers and
developers, there is another person who
controls the entire process - manager.
Managers must do their best too to avoid
conflicts within the team.
Hope that these recommendations will
be helpful. Above all, love your work and
colleagues, and remember that you are a
team member working on a common goal
– qualitative successful project.

1. ISTQB Standard glossary of terms
used in Software Testing.
2. ISTQB Certified Tester. Foundation
Level Syllabus.
3. Software Test [2009], http://s-test.
narod.ru/Testing/tester.htm
4. About developers [2009], http://
babru isk .com/uncategor ized/pro-
programmistov/12434
5. How tester must interact with developer?
What are their relations? [2009], http://
content.mail.ru/arch/27675/2270268.html
6. Software tester in search of defects
[2009], http://work.com.ua/articles/
subject/295/
7. Work of tester – grey working days
[2009], http://www.it4business.ru/lib/183/
8. Who is tester [2009], http://www.
software-testing.ru/library/around-testing/
job/85-who-is-tester
9. Veltsman Oleg, Litovchenko Evgenia,
“Constantly indicating mistakes to
colleagues, testers make enemies”
[2009], http://www.europa-personal.ru/
profesii225.htm

74

Quality Management
Systems, Environmental
Management Systems,
etc. – Are They All
Informatization and
Efficiency Improvement
Projects or Just a Farce?

Author: Stanislav Ogryzkovbasic

intermediate
advanced

About the author:

30 years old. Specialist
in enterprise-wide in-
formation systems,
business process re-
engineering (BPR),
quality management
(including testing). ISTQB Certifed
Tester, Foundation Level, and a certified
internal auditor of quality management
systems (ISO 9000).
Graduate of Vladimir State University,
Russia. MSc major in computer science,
PhD major in technical science. One of
the two first ISTQB Certifed Tester in
Russia.

Since 2004: Quality Assurance Person at
Inreco LAN (inrecolan.com), an offshore
software development outsourcing
company located in Vladimir, Russia.
Since 2005: Quality Assurance

Manager at the same company. Since
2006: Business Process Improvement
Manager at the company. At last, since
2010, Chief Information Officer (CIO) at
Inreco LAN.

See http://stanislaw.ru/eng/author/
resume.asp for details.

As we all know, nowadays it is extremely
popular to certify your own enterprise
against numerous international
standards: of quality management (ISO
9000), environmental management (ISO
14000), occupational health and safety
management, etc., as well as against
their branch versions (for example, CMMI
is the specifying standard of quality
management in software development
area).

From one side, such a situation is
definitely good, when all enterprises
in the world work in accordance with
uniform standards (world economy
integration, etc.). From another side,
mass certification lead to that the
certification process itself became just
a business, when certificates are given
right and left “for a few dollars more”.

For example, a certificate of a quality
management system satisfying the
requirements of ISO 9000:2000
standards became a “pass” for many
arrangements, tenders and markets long
ago. Respectively, many enterprises
nowadays need to get the certificate “as
soon as possible”.

In the fullness of time I worked for an
enterprise that was trying “to get the
certificate quickly”, and I took active
part in the preparation process and

Software Testing

75

the certification process itself. Then,
finally the enterprise successfully got
the certificate of its quality management
system. That is, formally we met all
the requirements but in fact stayed
on the same low level of production
process organization and its quality
management.

These trends take place not only in
Russia but all over the world. In point of
fact, this discredits certification, nullifies
its value as the guarantee of the same
quality level. For example, many Indian
and Chinese software development
companies (mostly outsourcers) have
so fishily many CMMI certificates that
potential clients just do not trust them
anymore!..

In the ideal case, an enterprise must
start the certification process not when
it needs to participate in a beneficial
tender but “naturally”, when it becomes
mature internally, when its production
processes achieve a proper level which
will be confirmed by the certificate. In
my case, I hope one day the software
development company where I work

now (Inreco LAN) will get a certificate
of quality (e.g. ISO 9000) easily – just
because internally we have already
became mature enough.

So why the ideal case is not the regular
case in our real life? Most of all, because
of the certification price: when an
enterprise wants to became internally
mature for certification (not “to get the
certificate a.s.a.p.”), I spends more
money on long-term work of external
consultants and/or internal specialists
in business process improvement,
on additional hardware and software,
including huge systems like ERP, their
installation and implementation, on
rising personnel’s qualification, etc.
Moreover, the real, honest certification
require to spend more time: on surveys,
business process re-engineering and
optimization, on creating the appropriate
enterprise standards, their enforcement
and improvement, etc. – generally, on
the elaboration of a high production
culture.

Of course, some short-sighted top
managers prefer instant benefit by

winning a tender (that required to have
a certificate) rather than long-and-costly
certification results. However, we need
to remember that all these management
systems were “invented” not for fun but
to bring real advantages for enterprises
by improving their production efficiency.

P.S. The sign like

that is the symbol of a certified quality
management system must not be printed
on production items as the symbol of
these items’ quality because it points
to the quality of the production process,
not to the quality of its results (though
it is expected that a qualitative process
produces qualitative things).

Software Testing

