
Requirements
Engineering and Testing
Michael Falter

	 Metrics for Software Testing:
Managing with Facts: Part 1:
The Why and How of Metrics

C
O

R
E

 N
º 2

 -
Ja

nu
ar

y
20

11

Rex Black

Business Process Testing
- A New Approach

Verónica Puymalie,
Diego Marín, Marcelo Arispe

Welcome

04 Editor Note

04 Editorial

05 Helping Chandrashekar live
his testing dreams
Pradeep Soundararajan

Management
06 Managing relations with
software vendor
Dariusz Paczewski

IN
D

E
X

Quality in Project

09 Traceability at the heart
of the software development
lifecycle: a powerful tool to
increase the quality
Eric RIOU du COSQUER
Krzysztof Chytła
..
12 Quality Matters. Though
Expenses May Mean Even
More
Stanislav Ogryzkov
..
15 Hudson as an example of
BuildServer tool
Jakub Kubryński

Software Testing

27 Ambiguity of defect severity
definition
Andrey Konushin, Julia Salnikova
..
29 Agile When It Works
Rex Black
..
31 Metrics for Software Te-
sting: Managing with Facts:
Part 1: The Why and How of
Metrics
Rex Black
..
37 Validation Testing (the good
“Happy Path”), Falsification
Testing (the Bad) and a word
about TDS Test Design Speci-
fications.
Yves Souvenir
..
39 Data-Driven Testing with
Selenium
Jacek Okrojek
..
42 OpenSta – OpenSource
for Web Load, HTTP Stress &
Performance testing
Łukasz Smolarski

Software Engineering

19 Requirements Engineering
and Testing Two Sides of the
same Coin
Michael Falter
..
22 Business Process Testing –
A New Approach
Verónica Puymalie, Diego Marín, Marce-
lo Arispe

Welcome

04

New Year - New Opportunities. Following this sentence we would
like to introduce the second issue of c0re magazine. In this issue
among plenty of interesting articles, you can read about:

• Metrics for Software Testing: Managing with Facts: Part 1: The
Why and How of Metrics. First part of the series by Rex Black. Au-
thor tries to answer to several questions. What’s so great about
metrics? How can we use metrics to manage testing? What do me-
trics tell us about the quality of the product? In this article and three
following ones, author will show us some of the answers.

• Requirement Engineering and Testing. By Michael Falter. We all
know that many software projects fail. We also know that the final
cost of making changes to already deployed and running software
can easily be 100 times higher than compared to the cost of chan-
ges in the analysis phase. Therefore, solid and systematic require-
ments engineering can be viewed as an early, integral part of the
quality assurance process. In the article, we will even go further…

• Managing relations with vendor. One of the definitions states
management as: „sequence of acts of getting people together to
accomplish desired goals and objectives and objectives efficiently
and effectively”. In light of the definition – do we correctly manage
relations with our software vendors? Dariusz Paczewski will answer
the question.
We would like to thank our partners, contributors and authors – their
help, insight and experience helps the magazine to deploy and de-
liver new and professional publications from all over the world. We
appreciate your help!

Enjoy reading!

c0re Team

Editor’s Note
Quarterly c0re (4 numbers per
year) is published by gasq Servi-
ce GmbH.
www.coremag.eu

Chief editor:
Karolina Zmitrowicz
karolina.zmitrowicz@coremag.eu

Editorial Staff:
Bartłomiej Prędki
bartlomiej.predki@coremag.eu

Cooperation:
Krzysztof Chytła
krzysztof.chytla@gmail.com

Dariusz Paczewski
dariusz.paczewski@coremag.eu

Mailing address:
C0RE Magazine
c/o gasq Service GmbH
Kronacher Straße 41
96052 Bamberg
Germany

Advertisements:
info@coremag.eu

All trade marks published are pro-
perty of the proper companies.

Copyright:
All papers published are part of
the copyright of the respective au-
thor or enterprise. It is prohibited
to rerelease, copy or modify the
contents of this paper without the-
ir written agreement.

Persons interested in writing
are asked to contact:
editors@coremag.eu

Editorial

05

Helping Chandrashekar
live his testing dreams

Author: Pradeep Soundararajan

About

Pradeep Soundararajan
http://testertested.blogspot.com
+91-98451-76817
tweet: testertested
pradeep.srajan@gmail.com

I make attempts to meet a lot of testers
so that I could learn from them. One such
tester from whom I learnt an important
lesson is Chandrashekar.
He was pretty silent and seemed like an
introvert during our first meet. He had a
story to say about how much difficulty he
and his family faced yet he came out well
to become a software tester.

Once he became a software tester,
he wanted to do it well. That's how we
met. He wanted to better and I wanted
to help people who better. I thought I
must have one of the best person to
have demonstrated my passion towards
testing till...

Chandru was diagnosed with
cancer

It was shocking to me when Sunil called
up once and informed me about Chandru
being diagnosed for Blood Cancer. That
night, I just couldn't sleep. I did sleep late
in the night out of tiredness that kicked in
for not sleeping.

The next day morning, I got up and
immediately felt a hope that Chandru
would recover from it because he is a
fighter. Called him up and to pep up his
confidence, I was shouting, "You are a

fighter. You are a gladiator. You are a
warrior. This is your biggest test"

After a couple of days when I met him
at the hospital, I saw the confidence and
fighting spirit of a warrior in him.

Chandru's testing passion

Even despite being treated for the most
troublesome disease, Chandru is not
giving up on his passion to test and
learn more about testing. He is currently
reading a testing book and trying to teach
his girl friend how to test. He occasionally
comes online, not necessarily to check
emails, but to check what's latest posts
from the bloggers he follows.
That's when I realized I am not one of
those who have demonstrated testing
passion yet compared to what Chandru
is doing.

Lack of funds

Now, this tester, whom we need for the
testing community because he is setting
a great example has run short of money
for treatment. The estimated funds
required are INR 20 lakhs for multiple
Chemotherapy cycles OR 50 lakhs if
bone marrow transplant is to be done.
Being the only breadwinner of the family
and in hospital, he has no source of
income.

Help Chandru

h t t p : / / h e l p c h a n d r u . c o m /
HowToDonate.aspx
http://helpchandru.com

• (CPAA - Cancer Patient Aid
Association)
Cancer Patient Aid Association

Please enter ChandraShekar BN in
projects input field.

• Pay Pal

Mail Account : daysofchandru@gmail.
com

• You could also do NEFT/RTGS account
transfer through Net Banking

Account Details :

Name : ChandraShekar BN

Account Number : 218010015960

Branch : Kormangala, Bangalore

Bank : ING Vysya Bank

IFSC Code: VYSA0002180

• You could also write a cheque and send
it to address which would be provided on
demand
Do email Sunil or mail to : sunilkumar56@
gmail.com and let know about your
donation, so that we could acknowledge
after receiving your donation.

We thank you in advance for your help
and may God bless you for this great
help you folks are doing.

Chandru is definitely going to thank the
Polish Testing community for the help
they are offering and it is going to be the
best way to bridge our friendship further.

Management

06

Managing relations with
software vendor

Author: Dariusz Paczewski

basic

intermediate
advanced

About the author:

Dariusz Paczewski is a manager in
e-banking test management team in one
of polish banks. Computer scientist by
training and a tester by passion. Dealing
with software bugs for 5 years. Currently
- due to performed duties - working as
the interface between business and IT.

With the acquired experience he
managed to work out effective methods
to combine these two areas. Experienced
with international projects.

Responsible for managing a testing team,
contacts with vendors and the quality
and efficiency of testing processes.
Interested in: quality in projects, quality
processes, organization, monitoring and
improving the test process.

Introduction

One definition of management describes
it as sequence of acts of getting people
together to accomplish desired goals
and objectives and objectives efficiently
and effectively. Management comprises:
planning, organizing, motivating and
controlling (source: Wikipedia). In light of
this definition - do we manage relations
with our software vendors? Probably
most of us does not – managing the test
project is, in itself, enough difficult and
absorbing. We expect our suppliers to
meet the deadlines and assure desired
software quality and at the same
time we assume that the fulfillment of
our expectations should not absorb
our resources. This approach often
causes problems when the critical
moment arrives and it appears that our
assumptions were incorrect. Is it possible

to avoid the unpleasant surprises? The
answer is yes, it is possible and also not
so difficult. The only thing that is required
of us is the introduction of a simple
standard of work and understanding the
basic mechanisms of cooperation.	

Quality according to the
customer. Quality according to
the vendor

The basic principle of facilitating, or even
enabling, effective collaboration is the
awareness that we strive to attain one
goal. In software, one of these objectives
is a system of good quality. But what does
‘quality’ mean? In this world there are
many definitions of this term - changing
over time, depending on the context and
environment. You can write volumes
on this subject. At this point let's focus
on the differences in the perception of
quality between the customer and the
vendor.

Why is there a difference in the evaluation
of the software between the recipient,
who is not satisfied with the product, and
a supplier who claims that the system
meets all of the specified requirements?
The answer is simple: the software
vendor tries to secure himself with the
most objective evaluation of the product
quality. He can do it by referring to the
contracted requirements. This creates
a problem on the client side – since the
customer could have been unable to
fully or clearly define his requirements or
made incorrect assumptions about the
quality of the vendor’s work. Given the
system to be retrieved from the vendor
the customer assesses it on the most
subjective basis, mostly in terms of the
degree of fulfillment of his requirements
(including the untold, not clear, ambiguous
and understood very differently than

the supplier). Subjective assessment
performed by the customer results in
a series of bug reports that, according
to the software vendor, are unjustified
- after all the product works according
to the specification. Both sides utterly
believe that they are right and despite the
fact that the time to release inexorably
passes most likely this pat situation will
not change. How do we resolve this
problem? The best way is to avoid it or
reduce the potential risk by involving
the test team as soon as possible,
most likely at the stage of requirements
acceptance. Experienced testers will be
able to verify the requirements in terms
of clarity, consistency and completeness.
Clarification of the requirements with
testers involved allows to better present
the customer expectations to the
software vendor. The best way to do that
is to use the testers, who have previously
worked with this particular software
vendor and know what mistakes are to
be expected - their effectiveness will be
better in comparison to the work of the
fresh testers.

The second way to avoid this deadlock
situation comes from the awareness that
not every found defect is really a defect.
Testers should verify the software against
given requirements - in situations when
the software produces unexpected output
yet the behavior was not specified or was
specified using ambiguous requirements
they should not rise a defect against the
software vendor but rather than that they
should send the issue to the internal
analysis team. In this way we avoid the
long queues of uncertain issues and the
software vendor will be able to focus
on fixing "confirmed" issues, without
unnecessary tension between both
teams.

07

Management

Understand your software
vendor

What exactly is a company that develops
software for us? It is certainly a unique
entity with its own values, organizational
and project culture. You cannot require
that a company providing development
services will align with your organization
on mentioned matters if they are against
their own rules and values. However, you
can avoid surprises during the project
by getting to know software vendor’s
approach, methods and values. Note the
area particularly important to you - an
approach to quality.

The best source of information about
the company are its employees. It does
not hurt to pay attention to statements
about the previous projects, experience,
training, overtime. With that data we
can create a vision of our co-worker –
does he have a trained staff (training,
experience), whether the projects are
under way in accordance with the plan
and shall be concluded successfully (no
overtime, rumors from previous projects).
You don’t have to be James Bond. Use
different events, like project kick-off or
other integration meetings, to gather
information.

Equally important as understanding of
the culture of the software vendor is
to understand his goals – does he see
the implementation of this project as
a chance to prove his competence?
Does he want to show us his best side?
Perhaps it is totally the opposite and his
position is so strong that he does not feel
the need for the fair discharge of their
duties? This could have a direct impact
on the quality of the system under test
as well as our project.

Know the rules. Make the rules.
Play by the rules

To play by the rules you must first
know them. The main document which
regulates the rights and obligations along
with the rules of cooperation between
the customer and contractor is the
contract. It is recommended to, at least,
read the part that concerns us directly.
To avoid surprises it’s good to know
what is expected from us, how much
time we have to fulfill our obligations
and the results of their negligence.
Fortunately, the contract does not serve
only the interests of the contractor - it is

a two-edged weapon, imposing certain
obligations on the contractor in the same
way it does for us. People coordinating
testing should be aware that they have
the right to influence the elements of
the agreement relating to their area or
influencing it.

For the test coordinator the contract is a
good place to define the procedures and
criteria for retrieving the software from the
vendor, schedule (relatively), penalties,
defect categorization, assumed response
times, communication channels,
accountability, etc...

Reference to the contract is the most
neutral and efficient way to claim what
one believes should be done and the
way it should be done. Both sides of
the contract agreed to certain rules of
cooperation, and if any of them fails
to comply with the conditions of the
contract the other one may assert it’s
rights relying on contract.

Like peer to peer

It is difficult to expect a fruitful
cooperation, if one party does not
respect or value the other. This principle
works well in the production of software
- if we fail to prove the vendor that we
have competence in the area of testing,
we can expect a significant reduction in
quality. For now let’s skip the internal
damage that inexperienced staff
member coordinating the tests can do
to the project and the software itself and
let’s focus on the relationship between
software vendor and customer. Software
supplier quickly senses that "on the other
side of the barricade" is a person who
cannot ensure or verify the quality of the
software. Where can it lead? The lightest
of the symptoms can be horrendously
long time for the tests on the vendor side.
It's "just" a waste of money - after all,
someone has to pay for time purportedly
spent on verification of the software
quality. Then we move to ignoring the
basic principles of software development
- such as lack of criteria for accepting
the system for testing, lack of plan of
internal vendor tests (not to mention the
results), no known bugs/issues list, etc...
This directly and negatively influences
the quality of the system to be tested. At
the end of such scenario we can expect
a total relaxation of procedures on the
side of our contractor and a drastic
reduction of quality. Unfortunately this is

not the end of the possibilities that our
incompetence gives to the vendor – the
area that probably will suffer the most are
the defect and everything that is related
with them. Without standards in this
critical area, we can expect a long time to
repair, rejection of reports, faulty patches
and poor regression testing. Our lack
of experience puts us at disadvantage
when trying to escalate a problem or
during any discussion – it’s hard for the
person who with insufficient competence
to challenge the experienced, or just a
clever-sounding, contractors.

How to prove your skills to software
vendors? If you have them then there
should be no problem - just consistently
do your work and do not let the vendor
to manipulate you in situations where
you are confident in your judgment. New
coordinators are in a quite good situation
if they can gain experience under the
guidance of experienced colleagues -
the best is to participate in one or two
projects as an observer or partially taking
over the liability of older coordinators.
If you do not feel confident and you do
not have who to consult you can rely on
the procedures – if there any. The worst
case are incompetent people without
any assistance who, for some reason,
are responsible for custody of the tests.
In such situation you can make a good
face on the bad play - pretend that you
know what you're doing while the learn
as quickly and as much as possible from
wherever you can gain some knowledge.
This is not the recommended strategy -
improper use of theoretical knowledge
can only worsen the situation. A better
solution is to play with open cards and
officially transfer the risks associated with
inexperience of the person coordinating
the tests to the vendor (i.e. vendor
should confirm that he will proactively
support the inexperienced test staff on
the customer side).

Instead of reacting – plan and
prevent

Why do not we plan? The reasons are
many and all can be a good epitaph on
the grave built by the end of the project
- "there was no time”, "I thought that the
project manager should do it”, "there was
no sense to plan such a minor thing”, "it
seemed to me that there's still time”, "I
have these resources", "I did not know
that ..." - sounds familiar? If you are
lucky, even despite the lack of planning,

08

you can manage to get your project to
the end. Unfortunately, it is more likely
that Murphy will be with you all the way
and everything goes as bad as possible.
How this translates into your working
relationship with software vendor? Any
failure in relation with the supplier may
give a reason for changes in the schedule
or excuse for poor quality of the system
- the relevant clauses governing these
issues are probably in the contract which
we are obliged to respect. Well advised:
do not go that way.

An important element of planning is to
include all of the parties involved in the
project. Such an approach is valuable
for at least two reasons: first, we ask the
supplier about how we can help him and
what he awaits from us. In addition to
the basic value which is, undoubtly, the
time needed to prepare for the expected
tasks such an attitude guarantees you
a far better position if you have any
problems with meeting deadlines by the
supplier (you did everything you could
to avoid this). Secondly – it’s good if we
identify and communicate our needs to
the vendor as soon as possible. With
the agreed tasks, deadlines and people
responsible for them, we can better
monitor their implementation. This goes
the same for your internal resources –
having everything planned and agreed
gives you a better chance for achieving
your goals.

For the professional planning you can
use free software available at Gantt
Project page - http://www.ganttproject.
biz/.

Do not forget about the goal of
the project

Please note that the overriding objective
for the client and the software vendor
should be timely implementation of the
system or application. A lot of stressful
situation can happen in the course
of the project – for some it might be a
natural reaction to look for guilty, shift
responsibility or escalate the problems
at increasingly higher levels. While
coordinating the test project you should
be aware that all of these actions not only
do not bring any added value by actually
make it impossible to enable it. As the
coordinator you should focus on looking
for the effective solution to the problem
and restoring the continuity of work
and only then, if it will be necessary, on

looking why did the problem occur (i.e.
to avoid the situation where you have to
deal with the same issue again).

You pay – you demand

Preparing to conduct a test project and
during its implementation you must be
aware that your contractor did not become
involved in building the system out of the
goodness of his heart. Every working
day of the supplier costs money - and it's
usually not small. We have every right to
verify the progress and effects of work
for which we paid. To avoid the awkward
situation the appropriate documentation,
methods and frequency of inspections
should be agreed with the vendor.
Remember to agree and address your
needs in advance – giving you access to
reporting systems or generating reports
may take some time.

Vendor’s motivation

In previous parts of the article emphasis
is placed on the management aspects
associated with planning, organizing
and controlling the work of your vendor.
However, as mentioned at the beginning
- the management is also a motivation.
Some of the motivating factors result
from previous recommendations: it is
far better to work in a controlled and
orderly environment in which you can
also count on support from the customer.
Do not forget, however, that the supplier
expects the financial gratification for a
job well done. We can provide it in the
contract in form of a bonus - by making
the size of the premium depending on the
quality of the delivered software. Using
this method, remember that the same
agreement may also impose penalties
on the supplier if the delivered software
fails to meet certain criteria.

As a method to integrate teams and
improve relationships with the vendor we
can use common social events. By far it
is the most popular and effective method.
Let us note, though, that the source of
the idea and funding should not come
from only one side. Ideally if it would be
a joint initiative of both parties.

Summary

Despite the extensive range of topics
on the agenda (from cross-company

team-building, through competence and
planning through to contract negotiation),
the author still maintains the theory that
the vendor relationship management is
not difficult. Note that this whole process
is easier and more natural if more and
more organizations implement these
simple fundamental rules.

The second thing that should draw your
attention is the involvement of the test
coordinator in the areas which don’t
seem to be directly related to his or her
responsibility. Negotiation of contract,
active involvement in the review of the
requirements, the initiation of team-
building events - you can say that this is
not the responsibility of the coordinator
but more of the project manager. Please
note the fact that all these activities
have an impact on YOUR work in the
later stages of the project. The author
recommends the most reasonable and
pro active attitude you can think of.
Remember the old polish saying –the
sleep you get at night depends on how
you made your bed before.

Last but not least – the things mentioned
here are not the most sophisticated and
only things that can be used in your
benefit. These are the most simple and
easy to introduce guidelines – which
doesn’t mean that they are not effective.
Author encourages you to look after your
own methods to improve the quality of
work with your software vendor and – in
result – the quality of the systems you
test.

Good luck with the forthcoming projects,
testing and effective vendor relationship
management!

Management

09

Quality in Project

Traceability at the heart of
the software development
lifecycle: a powerful tool
to increase the quality

Author: : Eric RIOU du COSQUER Co-author: Krzysztof Chytła

basic

intermediate
advanced

About the author:

Eric RIOU du COSQUER, Treasurer of
the CFTL (Comité Français des Tests
Logiciels), Test Manager at Orange-
France Télécom. Eric is responsible for
a team dedicated to Requirements and
Tests Management at Orange, a French
telecommunications company renown
worldwide. In his current position, he is in
charge of defining and implementing the
processes defining Requirements and
Tests management as well as of selecting
and supporting the associated tools. His
daily activities also consist of providing
internal training courses and supporting
the software projects of the Information
Technology division of Orange.

Holder of the Foundation Level,
Advanced Level Test Manager and
Advanced Level Test Analyst certificates
issued by the International Software
Testing Qualifications Board.

indispensable phrase for every software
development glossary. It is widely used
every day or nearly every day. It reflects
a principal good practice upon which
everyone agrees: “It is necessary to set
up traceability links between different
items being manipulated, starting with
business needs, through functional
requirements, towards the code”. The
goal is to ensure – and to be able to prove
- that what had been initially requested is
delivered, verified, validated and easily
maintainable.

But understanding and implementing
this concept are often complex and it
might be difficult to identify the desired
traceability level in a specific context, to
implement and to measure it.
This article will provide you with ideas
on this matter in order to use it in an
easy way, in the context of your software
development project.

About traceability

Many definitions exist for the term
«traceability», not only in the software
development area. The formal one is
a follows: “Traceability is the ability
to chronologically interrelate uniquely
identifiable entities in a way that is
verifiable. Traceability is the ability to
verify the history, location, or application
of an item by means of documented
recorded identification”[1].

Definition from the food industry is highly

About the Co-author:

Krzysztof Chytła
Began his software testing adventure
back in 2001 as a beta tester and
went pro in 2007 after graduating from
Wroclaw University of Technology. He
was initially involved with mass-market
mobile applications, then moved to J2EE
systems such as customer care portal
for one of the mobile carriers. Eventually
switched to embedded system in the
area of Telecommunications where he
currently excels.

Main responsibilities: software testing
and integration, planning, requirements
analysis, test automation, coaching
and remote support, test process
improvement and documentation.

Holder of ISTQB Advanced Technical
Test Analyst Certificate.

Introduction

The term «traceability» is an

10

Quality in Project

interesting and might serve as a good
example: “Traceability = ability to find,
for a specific project, evidences for all
the steps of its creation and to identify
the origin of each one of its components.
Product’s traceability allows, for
instance, to identify the suppliers of raw
material, the different places where the
product was stored, the operations and
equipment used in its manufacturing” [2],
[3].

Sounds familiar, doesn’t it? If we replace
“raw material” with “components” and
“stored” with “developed and tested”, we
are not that far from the meaning given to
traceability in the software development
world!

In CMMI-development, for instance,
traceability is defined as: “a discernible
association among two or more logical
entities such as requirements, system
elements, verifications, or tasks“ [4].

In fact, within each company, in each
project, it is necessary to think about the
meaning behind the word «traceability»
before thinking about its implementation.
It is advisable to have a clear
understanding of the chosen definition
and stick to it. Remeber that it works in
both directions: top-down and bottom-up
or forwards and downwards if you like.
Traceability can be divided depending
on the point of view. Vertical traceability
describes the interdependencies
among the parts of a single work
product or discipline (e.g. requirement
- requirement). Horizontal traceability
addresses the relationship of the
components across collections of work
products (e.g. design component – code
component)

Items affected by the
traceability

Many items can be traced between one
another, especially if we cover the full
software development lifecycle, from
business needs elicitation to failures
discovered after the product roll out. For
example:

• Needs formulated by a customer
• Business requirements
• Product requirements
• Technical architecture elements
• Functional architecture elements
• Written code
• Tests cases

• Test sets
• Test environment components
• Test data
• Test results
• Incidents
• Defects
• ...

This list is far from being exhaustive. It
can be modified or extended according
to the context of one’s project.

Most useful interrelation s

Here, once again, the answer will vary
depending on companies and projects.
The most important thing is to choose
the relevant subset that covers all the
necessary relations. Keep it concise to
avoid misuse or misunderstandings.
The goal of traceability is providing
useful information and saving time.
Nevertheless creating traceability links
does have a cost, a cost that pays off.
Let’s keep that in mind. This will allow
efficient communication and will be a
helpful argument in convince the main
stakeholders to approve the initial effort
to set up traceability.

Apart from being in a particular context,
such as Safety Critical Systems, it is not
necessary to implement all the possible
links but only the ones with an added
value for the project. Let us try to identify
the most useful links from the paragraph
above. These should be mandatory in
most cases.

customer needs – business
requirements
On one hand, it will ensure that a need,
which is often blurred or insufficiently
described by small pieces of information
or in many different ways (e.g., emails,
documents, pictures…) is covered by
one or more business requirements,
clearly identified.

On the other hand, during business
requirements reviews, it will allow finding
out the source of the requirement and
where to find additional information if
necessary.

business requirement – product
requirement
This vertical traceability link shows
how the product should be developed
having taken into account each business
requirement. It ensures that no business
requirement is forgotten and offers the

possibility to identify the source of each
product requirement.

A business requirement may impact
several parts of a product and this link
may be useful for analysing the impact
of business changes on the design and
implementation of the product.

product requirement – architecture
element
In order to know in which hardware or
software item of a product a requirement
is to be implemented, it is necessary
to create a link that will ensure that a
requirement has been really implemented
in the correct product. The link between
human effort, ideas and the software that
implements is brought to life this way.

product requirement – code
How will the modification of a requirement
impact the code? Which product
requirement will be affected by a defect
found in a specific part of the code? How
much code is needed to implement the
requirement? This link is necessary to
answer the above questions. It may be a
direct link or an indirect one, for example,
through architecture elements.

code – test case
This link, which is often managed
within the development environment, is
very important not only from the code
coverage point of view but also does it
help to quickly identify the regression
test cases that should be executed again
after a code modification. Moreover it
makes automation of regression tests
easier. This link should be considered at
the component level.

product requirement – test case
Firstly, this link can and should be created
early in the software lifecycle, it will
allow verifying that a test (at least one)
has been prepared for the associated
requirement and, from the test’s point
of view, to know what is actually being
tested by each test.

Secondly, when the tests execution is
started, the link will allow mapping of the
execution results to the requirements
providing the requirements coverage
information.

Test-specific links: test case – test
instance – test step - test environment
– test data – test result – test log - test
report
If we consider that a test case is a

11

Quality in Project

scenario made up of steps, then it’s
instance can be executed in different
environments, with different test data
and of course with different test results
at the end. Test steps can be generic
(especially if automated testing takes
place either keyword-driven or script
based) and reused upon need.

We may talk about test instance as of the
representation of the test associated to
an environment and to test data. A test
instance executed several times may
have different results.

To be precise with this kind of traceability
and documentation, it is highly
recommended to follow the IEEE 829
test documentation standard.

test result – defect
Thanks to this link we can ensure that
each incident observed during test
execution has led to the creation of a
defect report.

Used from a defect’s point of view,
this link is very useful for at least two
reasons. First, the developer in charge
of correcting the fault will easily find the
associated test cases and be able to
execute it again in order to reproduce
the incident and understand the defect.
Secondly, once the defect has been
corrected, the tester in charge of verifying
the correction could also use the link to
find the associated test and verify that it
has passed successfully!

Each link is useful by itself but linking
them together brings oneself far

greater benefits. The expected return
of investment can increase as much
as tenfold if compare to single links or
none!

For example, if you have full traceability,
that is: « Business Requirement –
Product Requirement – Test – Test
Instance – Test results – Defects » you
will be able to know the status of the
requirements coverage anytime and
for each requirement you will easily
answer the following question: “Has it
been tested?”, “What was the result?”,
if the result was negative: “What is the
associated defect?” and so on.

Setting up the useful links and
measuring traceability

Once the useful links have been
identified, it is necessary to think about
the way of implementing them. All the
phases of the software development
lifecycle are affected, as well as many
items, many actors and different tools
(e.g., requirement management, test
management and execution, modelling,
development, defects management, et
cetera).

Each link may be created with or without
a tool, manually or automatically.
Considering the size of nowadays
projects it would be virtually impossible to
handle the traceability manually. Hence
it is supported by number of tools both
commercial and open source. The most
popular ones are: HP Quality Centre,
IBM Lotus Notes, Bugzilla, Mantis, Jira,
Testlink. They have different interfaces
but a common goal: making traceability
clear and efficient.

Unfortunately there is no tool which offers
the possibility to create and manage all
the links. As a result of that we often
have to develop bridges or interfaces
between tools. The most important thing
is to clearly explain and document the
way of creating the links. Selection of
the right tool that fits best to the project
is a real challenge and should not be
treated lightly. Serious consideration and
wide consultation should be undertaken
involving people from different parts of
the project – potential end users. The
role of trainings in improving people’s
skills cannot be deprecated.

Finally, we have to consider the
measures that can be applied under

specific conditions. Let us consider it in
two ways:

1. The measure of the traceability
itself : the objective is to measure the
percentage of implemented links broken
down by the total number of possible
links (ideally 100%) and to make the
appropriated decisions.

Do we have 100% of the requirements
associated with at least one test case?
Is every item or piece of software
associated to a requirement or to an
item of the software design? If not
reasons should be given or omissions
corrected. Visibility of problems is of the
top importance.

2. Traceability allows better and more
thorough measures. For example: “How
many defects do we have in different
parts of the code?”, “Which requirements
have been fully tested?”,

“How many tests will have to be updated
and re-executed in case a requirement
is modified?

It may be difficult to define and implement
the traceability. It has to be done project
by project, depending on the objectives
and needs regarding quality. Cleverly
used, traceability does become a
powerful way of improving software
quality and satisfying the customers. Try
it and see how it makes work easier and
more effective. If traceability is correctly
implemented no information gets lost
or is missing when most wanted. All
that gathered together positively affects
quality of the developed product. Thanks
to traceability the quality of the product
can be better described and presented
to interested stakeholders.

References:

[1]. "Glossary," ASME Boiler and
Pressure Vessel Code, Section III, Article
NCA-9000

[2] http://www.tracefood.org/index.php/
Fundamentals:Traceability_definition

[3] http://www.azaquar.com/en/qsa/
index.php?cible=trace_tracabilite

[4]Practical insight into CMMI by Tim
Kasse, Artech House Publishers; 2
edition, August 2008

12

Quality in Project

Quality Matters. Though
Expenses May Mean
Even More

Author: Stanislav Ogryzkovbasic

intermediate
advanced

About the author:

30 years old. Specialist in enterprise-
wide information systems, business
process re-engineering (BPR), quality
management (including testing). ISTQB
Certifed Tester, Foundation Level, and
a certified internal auditor of quality
management systems (ISO 9000).

Graduate of Vladimir State University,
Russia. MSc major in computer science,
PhD major in technical science. One of
the two first ISTQB Certifed Tester in
Russia.

Since 2004: Quality Assurance Person at
Inreco LAN (inrecolan.com), an offshore
software development outsourcing
company located in Vladimir, Russia.
Since 2005: Quality Assurance
Manager at the same company. Since
2006: Business Process Improvement
Manager at the company. At last, since
2010, Chief Information Officer (CIO) at
Inreco LAN.

See http://stanislaw.ru/eng/author/
resume.asp for details.

outsourcers), So what we can learn from
that arguable statement on “quality vs.
expenses”?..

In fact, nothing new. Do you remember
the so-called “iron tetrahedron” (pyramid)
in software development? Let’s look at
the picture once again:

(Sorry for the “Quality” written
backwards – I am sure you have got that
humor.:-) So we have “Functionality” of
some “Quality” created with available
“Resources” in specified “Time”. Here
“Resources” include financial resources,
i. e. our expenses. So if you would like
to increase you competitive ability by
decreasing your expenses, you will
definitely “automatically” increase the
time you need to complete, or (more
likely) decrease the quantity and/or
quality of the functionality. The problem
of finding the optimal balance in the “iron
tetrahedron” still remains unresolved in
its general case.

The paradox of software development is,
if you spend more resources on software
testing you get software of better quality

For a few weeks I have been reading a
very interesting book by Andrey Parshev,
entitled “Why Russia is not America”. It is
mostly an economic work, though a few
political aspects could not be avoided in
it. The book is quite arguable, from the
economic point of view. However, there
is an interesting statement about quality,
which I would like to discuss below.

The author of the book, Mr. Parshev,
states, “Quality and competitive ability
are absolutely different things”. At first
sight the statement looks strange and
even contrary towards the modern
understanding of that “quality rules”. :-)
However, a little bit below in his text the
author shows that goods of moderately
worse quality may be sold better than
goods of better quality. So, if quality is not
the (main) criterion of competitive ability,
then what? The author deduces that the
main criterion of competitive ability is
expenses (as compared to earnings).
The more positive difference between
your earnings and your expenses, the
more competitive you are.

Can this all be true? Yes, look at
China that produces most of the goods
delivered all over the world. So was
that buzz about “quality matters” just a
useless buzz, “blah-blah-blah”?.. No,
look at the same China – their goods
became better and better, otherwise
their markets may stop growing because
in some industries, places and among
some people there are different priorities
for quality and prices. Another example:
Russian software developers in some
cases are preferred in the world for
their generally better quality despite of
their higher rates (as compared to other

13

Quality in Project

that increases your competitive ability
anyway. Meanwhile, in this case you also
increase your expenses thus decrease
your competitive ability. How may the
paradox be understood?

Let’s recall that software testing is about
finding defects in software. :-) And there
is a so-called “cost of defect” (or, more
precisely, “cost of fixing software defects”)
depending on when a defect is found
and by whom. For example, the cost of
a defect found by a professional tester
during earlier phases of a project is less
than the cost of the same defect found in
the project later, and so on. The highest
cost is the cost of the same defect found

by a real client in the publicly released
software.

So if software testing increases expenses
then it does so in a non-linear manner.
Moreover, we may suppose that our
testing costs in the general case are
compensated by less defects costs, and
the total quality cost level may be quite
stable:

And if the total quality cost level is stable
then software testing does not increase
our expenses thus does not decrease our
competitive ability. Moreover, software
testing still increases our competitive
ability by improving the quality of our
software.

So you may relax – quality still matters.
:-)

P.S. A few more words on “the lowest
competitive ability of the Russian
economy” (due to its severe climatic
conditions) also stated by Mr. Parshev. The
first contradicting example was partially
given above, I mean, Russian software
developers. The total and wide spreading
of professional software testing in Russia
may even boost that example (that is why
I became a member of RSTQB/ISTQB).
The second example is… Russian space
rockets and ships that are not cheap but
are much more reliable than any others.
:-)

�������������

����� �������� ���������� ������� ������ ���
��
����������� ���������� ���� �������� ��� ����
����������������������
��
��������� �������� ���� ����������� ������� ����
���
��
���� ����������� �������������� ��������������
���� ������������� ��� �������������� �����������
���
���

��������������������������

������ �������� ������� ������������
��������������������������������������
�������
��
��
��
����� ������� ������������� ����� �����������
������������������������������

���������������������������������
����������
�������������������

������������������

���������������������������������
����������������

��������������������
��������������������������

���������������������������
����������

www.bqi.eu

Quality in Project

15

Hudson as an example
of BuildServer tool

Author: Jakub Kubryński

basic

intermediate
advanced

About the author:

Habitually, Jakub is engaged in designing,
implementing and optimizing the software
processes and quality management. His
functions include both the development of
procedures and toolkits to support these
tasks. He is also associated with the
company Furba implementing projects
in the field of consultancy and quality
assurance in IT.

Contact the author:
j.kubrynski@furba.eu

Continuous Integration in a
nutshell

As most readers may know, Continuous
Integration appeared for the very first time
in the article "Continuous Integration" by
Martin Fowler, which is considered today
as the father of the methodology. In short,
he defines CI as follows:
" Continuous Integration is a software
development practice where members
of a team integrate their work frequently,
usually each person integrates at least
daily - leading to multiple integrations per
day. Each integration is verified by an
automated build (including test) to detect
integration errors as quickly as possible.
Many teams find that this approach
leads to significantly reduced integration

instance. Will try to explain that their
properties spend awake at night and what
the IT staff we can fix this by optimizing
their processes and using tools such
as build server that such action very
well supported. But first a few words of
introduction to the topic mentioned in the
preceding sentence tool.

Features of a build server

There is a certain set of characteristics
that can describe the correct software to
act as the build server. Let’s distinguish
main construction phase of a system
to determine such characteristics.
Absolutely essential to this process is
the source code - without it do not have
anything to compile. Our server should
then be able to download the source
code. Therefore, integration with source
code management system is the first
feature of our server.

The next step is to run the compilation
process. This step, depending on the
technology used can have different

problems and allows a team to develop
cohesive software more rapidly. "

The life cycle of an artifact

The above definition of Continuous
Integration entails a very important
message: we seek to accelerate the
production of better software. While
full implementation of the CI may be
a relatively serious challenge so far to
eliminate the risky part of the already
functioning in the manufacturing process
may be carried out fairly painlessly.
Let's stages of software development
(deliberately skipping issues and design
requirements gathering as irrelevant to
the contents of the article):

Development
Compilation
Testing and quality analysis
Installation

While the first and last element again, I
will cleverly omitted, however the two
central devote virtually all of the current

Quality in Project

16

shapes, so since we are interested in
software used in our team will require at
least the currently used tools. This gives
us a characteristic number two.

After getting output from compiler we
should check its accuracy. Most obvious
in this phase is to carry out the tests.
Therefore, the ability to runt tests it
another thing I expect from the tool. In
addition, it is good to run analysis of the
source code quality. So support for the
instruments of Quality Assurance is the
next desired functionality.

We still have to answer the question:
when does all this have to happen? Now
that these steps are not performed in
isolation from the actual manufacturing
process, it would be able to determine
(the more detail the better) moments
in time and events to launch a decisive
share of building.

The above basic set of properties can of
course be extended - often dependent
on the scale of deployment - requirement
such as providing authentication, intuitive
handling, storage history, automated
deployment etc., which determine the
choice of a particular product from the
market (ie. TeamCity, CruiseControl,
Bamboo and described further below,
Hudson).

As an example I will show use cases,
best practices and benefits arising from

the use of so-called build server. I will
use Hudson server for that.

Who is that Hudson

What is the best in using the above
tools in daily work? For me, Hudson is
an additional person working in a team,
performing many repetitive and very basic
things. Tasks such as documentation
generation, test preparation, production
of artifacts, deployment, run tests,
etc. influence the creative tasks of
programmers. That is the moment
when Hudson shows his benefits. He
performs duties regularly, promptly and
deterministically. With the extended
configuration system, we can thoroughly
customize the software to our needs. But
what we have to do to enable the work
efficiency of nour new colleague?

Working with a new friend

The hero of this article part is
automation.

The basic requirement is Hudson is
automated build. Fortunately, we come
here with numerous plug-ins, allowing
usage the most of build tools (such as
Make, Maven, Ant, Msbuild, etc.). In the
case of less popular technologies (such
as PowerBuilder, Delphi, etc..) we can
also use shell scripts, which with more

Figure 1 - The main Hudson page

or less effort, can automate almost
everything.

In addition, we must remember that
Hudson's duties are limited to the
following:

checkout source code from the repository,
launch the build process, running "post-
build" actions

The above range of possible actions
obliges us to use the so-called principles
of a clean build (by the way, regardless of
whether we use Hudson or not we should
implement that) . In another nomenclature,
we can also meet the definition of CRISP
build, which is comprised of the following
characteristics:

Complete - all that is required for the
compilation (except heavy elements
such as application servers, etc) is in
the repository. This applies mainly to
libraries and files needed to properly
create a compilation (of course, in the
case of technologies that manage their
own relationships - such as Maven - to
comply with this requirement will need
to take care in a separate repository for
artifacts)

repeatable - in other words, the
deterministic - gives the same results
every time you start

 Informative - carrying information about

their "health" - if the compilation failed, we
know which one class of errors, if the unit
tests ended without success, we know
that, and where the code failed, etc.

 Schedulable - giving a run at the right
time with the triggers or timing.

 Portable - that is such a programmer to
emerging allegations need not correspond
to the famous "works for me "

Once we have prepared compiled
artifact , the next step is the automatic
deployment. This ensures that both
the tightness of the manufacturing
process, and deployment acceleration
of subsequent versions of the software.
It also enables a smooth launch of test
environments, which opens up further
opportunities with Hudson.

As we know, our new colleague is doing
well in running the test software entrusted
to him. But here again we must refer to the

word of the day (automation). Tests, like
the build and deployment process, must
be automatic. Fortunately, at the current
level of IT solutions is not limited us to
verify only the simplest elements of the
application. With the help of the Hudson,
we can run both unit tests (xUnit),
functional (eg Selenium), performance
and integration.

Build optimization

We come to the stage where we should
consider whether a full build of the system
(including compilation, deployment,
testing and often a static analysis of source
code) has to be not too protracted. How
long does the programmer who made the
change a few lines of code will want to
wait for effects? For small applications,
where the build takes a few minutes,
we do not have to dwell on the theme
builds differentiation. At a time, when
the full process is extended to several

hours, we can not do already without
the introduction of some improvements,
such as segregation of individual tasks
between different types of builds. In
practice, this amounts to a de facto set
up several jobs for such a system, for
example, organized as follows:

 developement - runs automatically when
it detects changes in the source code
repository, consisting of only compile and
run unit tests,

 integration - caused for instance twice a
day, to verify compliance of the current
version of our application with related
systems,

 night - as the name suggests, usually
run at night and covering all elements
of the process - here a few hours is not
a problem, because it even the most
hard-working team has relax during the
night…

Figure 2 - Design View

Quality in Project

17

Further advantages

What are the additional pros from the
implementation of Hudson? In addition
to those mentioned before is to serve as
guardian of the team. Good configuration
actions to be performed at various build
stages make it possible for the immediate
notification to the developer compiled the
code revision to the erroneous execution
of unit tests or lack of appropriate versions
of libraries.

In addition, using the build server tools
in manufacturing process, we deprive
ourselves of the problem often found
under the title "compiles for me. " In the
longer term, this approach also leads
to the decentralization of knowledge on
how to build, test and deploy systems. It
should also be aware that we can utilize
the Hudson, not only to classical building
systems, but also to perform many
administrative tasks and maintenance,
not necessarily related to the compilation
environment.

We grow in strength

The next stage of initiation into the use
of the Hudson is the use of extensions
(otherwise known as plug-ins). We have
the choice of over 300 (!) ready to run
plug-ins grouped in functional terms, such
as code management, builds triggers,
build tools, etc.. As a result, they cover
most of the activities and the challenges
confronted with daily work. But the
situation a is little more complicated
in the case of ongoing deployments in
large companies, where a lightweight
(agile style) approach of Hudson collides
with severe procedures - such as the
necessity of providing multiple levels
of permissions, auditing, etc. As a rule,
it is combined with the necessity to
extend set of default plug-ins with out
own. Fortunately, there comes some
help with very friendly API, enabling
the transformation of the Hudson in a
very powerful tool. After the appropriate
coding and configuration we get a tool
fully prepared to work and integration
with external systems. As a confirmation,
please notice that the biggest ever made
by me to implementation, and also one
of the largest in the world), is close to
200 applications built for more than 70
servers.

Quality in Project

18

Quick Start to Hudson

Download a WAR file from the address
http://hudson-ci.org/latest/hudson.war

1. Set the environment variable pointing
to HUDSON_HOME directory in which
you want Hudson files
--
2. Run the application using the command
java -jar hudson.war
--
3. At http://localhost:8080 we have the
main dashboard of Hudson
--
4. Click "Manage the Hudson" and
"Configure System" in order to install
tools (JDK, Maven2)

a. in bo Maven "Install automatically"
select the version 2.0.7 and enter the
name (eg, Maven 2.0.7)

b. in box JDK "Install automatically"
choose 6 Update 21 and enter the name
(eg JDK 1.6_21)

c. At the bottom of the page click "Save"
--
5. To add a new task click "New Job "

a. Enter the name of the task (eg, sonar-
maven-plugin)

b. Select the "Build a Maven2 project"

c. Click "OK"
--
6. In the configuration window of job set:

a. The path to the project in SVN (Source
Code Management => Subversion):
http://svn.codehaus.org/mojo/trunk/
mojo/sonar-maven-plugin/

b. Build Triggers - select Pool SCM and
write "* * / 1 * * *" (which will pool SVN
every hour to search a new version of the
code)

c. Build:
i. Root POM: pom.xml
ii. Goals and options: clean install

d. Click "Save"
--
7. We have been transferred to the
Design view, where we choose the "Build
Now" in order to create build.
--
8. The process of building, we can peek
keep going into the current process
(shown in box Build History) and then
selecting "Console Output"
--
9. Without any additional settings you
can get the result of compiling when
reviewing project workspace.

Summary

The everyday growing popularity (even
certified by the amount of downloads)
confirms the validity of this way to
optimize the development process.
Similar conclusions can be drawn also
from my past experience. Costs related
to the implementation of both the server
and adaptation of compilation of our
applications to the general requirements
are much less than those incomes
obtained in return of the level of security,
which includes the already mentioned
rapid compilation error detection, failure
in the course of testing, and storage of
information in an accessible way to how
to build. In the next article will present
further employee that will support our
efforts, the grateful on behalf of the Sonar
...

Software engineering

19

Requirements
Engineering and Testing
Two Sides of the same Coin

Author: Michael Falter

basic

intermediate
advanced

About the author:

Michael Falter is a Vice President and Head
of the Solution Line PQM at PENTASYS
AG, a software company in Munich,
Germany. PQM stands for “Project- and
Quality Management”. Michael is looking
back at more than 20 years of experience
in the IT industry. He holds a degree in
Computer Science of the University of
Augsburg in Germany. Important stations
in his professional career were debis and
T-Systems. Michael is a PMI certified
Project Management Professional.
Michael works for PENTASYS AG since
2001, where he focused on project
management and quality assurance.

Many software projects fail, that’s a fact.
The actual percentage varies, depending
on how you define “fail”. Even a project,
officially finished successfully, may in
reality be a failure, because at the end,
the software did not really meet the
requirements of the users. The final cost
of making changes to already deployed

much formalized V-Model XT all have a
problem here. Requirements analysis
and testing are separate phases there,
often with many months of time in
between. But “times are changing” and
people, namely end users are changing;
therefore requirements are changing. So,
in the end, the testers are testing features
which might be already irrelevant to the
end user.

Focus, focus, focus

What exactly is relevant to the end users?
This leads us to the first important step for
the requirements engineer. Identify the
relevant stake holders, the real decision
makers and process owners. Be careful
not to waste your time with the “wrong”
people. The next important step is to get
structure into the cloud of requirements
you will find at your customers site. It
has become a good practice to group
requirements into

• Business requirements
• User requirements
• Functional requirements
• Non functional requirements

The order of these requirement facets
is not random. Business requirements
come first, then user requirements and
so on.

Cut it down

It was already said, that requirements
engineering and testing have to be
one process. To achieve this, there are
“requirements” for the requirements

and running software can easily be 100
times higher than compared to the cost of
changes in the analysis phase. Therefore,
solid and systematic requirements
engineering can be viewed as an early,
integral part of the quality assurance
process. In this article, we will even
go further. We will claim, that iterative
requirements engineering, embedded
in an “agile project”, will produce better
and more cost effective software than
“classical” approaches.

Meet the requirements

What makes you sure, the software you
are developing meets the requirements
of your end users? You might say: “I
am testing the software. If I finally find
no bugs; the software does what it is
supposed to do.” Right or wrong? Maybe
wrong! Your software might work without
blocking or crashing or eating up all
of the memory. Still, your software is
probably not doing what your end user
EXPECTED. So, the critical question
is: how do we assure, that our software
does what is expected?

How do we find out what’s expected?

Well, you already guessed: good
requirements engineering! But what is
“good requirements engineering”? How
do we achieve this? The answer is quite
simple: requirements engineering and
testing have to be in one process. They
have to live in a very close relationship.
And this is the moment when we discover,
that “classical” software development
process models like waterfall or the very

Software engineering

20

specification. For one, requirements
have to be documented in a form suitable
as input for testing. In the best of all
worlds, requirements are documented
to be understood by end users and the
test system as well. This is very difficult
to accomplish, especially if the software
system to be developed is quite large and
complex. The way out of this dilemma
is: agile software development. If it’s
done right, the system is broken down
into manageable packages. The most
important (for business and users) parts
of the software system will come first.
Because the packages are small, there
is a good chance that stake holders (end
users) will be able to understand even
quite formal requirement specifications.
The next important step for the
requirements engineer (together with the
stake holders) is therefore: “Cut the beef
into eatable pieces”.

We modularized already! What’s the
difference?

It is important to understand the difference
between the work of a software architect
in a “classical” development process,
where he/she cuts a complex system
into components and modules and
the work of a requirements engineer
within an “agile team”. For example, the
software architect typically is used to split
functions of the system into three tiers.
He will decide which functions have to
be located in a data management layer,
which ones belong in a middle tier with
communication and mediation functions
and which ones are facing the end user
at some kind of client. This is a purely
technical way of looking at a software
system (still makes some sense by the
way). But from a user perspective, it’s not
of interest at all.

Requirements specification: Quality
first

The challenge for the requirements
engineer in an “agile team” is to identify
chunks of functionality, in most cases
containing all three tiers of the system
and specifying them in a way, where end
users are able to understand (and agree)
and the testers of the team are able to
test them in a very early stage. A good
practice to document requirements for
developers is the “use case”. As implied
by the name, use cases describe certain
activities of the user, not technical

functions. If the requirements are elicited,
analyzed and documented with this in
mind, then the requirements specification
ideally is:

• Complete
• Correct
• Verifiable
• Unambiguous
• Consistent
• Implementable

Requirements which adhere to these
quality criteria are well suited to be part
of the quality assurance and testing
process. In this case, there is a good
chance that the testers will test functions
having a one-to-one relationship to the
requirements from the business/user
side.

And again: what do we test?

This brings up another relationship with
agile software development: Test Driven
Development. Using this method, the
team, after getting the requirements
specification, immediately writes a test
for these features. The test will be run,
before the actual code for the required
function is written. If it does not fail, then
either the test program is defect, or the
function required is already implemented.
There is another inherent benefit in using
such a method. Not only do we want to
meet the requirements of the end users,
we also want to avoid writing functions
NOT required, just because a developer
felt good writing “cool” code. This is
accomplished by making sure, that only
so much code is written, that the test is
passed.

User acceptance, no more, no less

The next level of such a procedure is the
“Acceptance Test Driven Development”.
This form of testing is more or less
completely driven by the business/user
side. Naturally, it only makes sense
on a level, where some of the basic
functions of a larger system are already
implemented and can be used “stand
alone”. This fits the general procedure in
an agile development. The team might
for example use Scrum to “manage the
development process”. In that case,
every two or four weeks, the team hands
something “useable” over to the business/
user side. The quantum tested is typically
directly related to a user story, not a use

case. The reason for this is that user
stories are documented in the language
of the user. An example for a user story
would be: “as a warehouse manager, I
want to check the stock of ACME-Cans”.

Manage requirements
All of what we have discussed so far
might sound quite reasonable to most
of us. But, a requirements specification
could be perfect; an acceptance test
could enjoy your end users. It’s all in vain,
if it’s just a single shot. As the project
goes on, requirements change or new
requirements pop up. This is the moment
you need a thorough management of
the changes. A method assuring that
changing requirements and acceptance
testing stay synced. That calls for test
automation with regression testing and
management. Traceability is the key. You
might come into a situation, where one
of the users, your customer, will ask you:
why does the system behave like “a” and
not like “b” and who asked when for “c”?

Everybody likes to win

The customer wins, if his user community
gets exactly what they needed, at that
point in time. All the “nice-to-haves”
have been shifted to a version 2.0 in a
consensual process. The project was
carried out in time and on budget.
The software producer wins, if he was
able to secure his margin (he has to feed
his engineers) and if the customer is a
good reference (which will help with the
acquisition of new projects).

 “Good requirements engineering”: the
answer

As we have seen, requirements
engineering should not be a separate
phase in the progress of a software
project. It has to be firmly interwoven
with quality assurance and management.
Admittedly, this is much harder to
implement in cases where “classical”
project process models are still in place.
To some respect, this creates a plea for
agile software development, which is an
iterative development process by itself.
Iterative requirements engineering might
look more expensive compared to a
classical approach in the beginning, but
the opposite is true. In the end, iterative
requirements engineering has saved
money and produced software fitting to
the needs of the customer.

... to have won
 an award this year?

HOW DOES IT FEEL ...

Why to Apply:
Earn Recognition and Make a Difference

> Learn more about the award
application process!

How to Apply:

> www.bqi.eu> www.bqi.eu

BQI is a leading institute for business awards. Our focus is the performance of companies and employees. BQI’s Leadership Awards

are highly prestigious awards for outstanding achievements by businesses in the categories of Innovation and Quality.

Contact the BQI Award office via info@bqi.eu today!

Software engineering

22

Business Process Testing
– A New Approach

Author: Verónica Puymalie, Diego Marín, Marcelo Arispe

basic

intermediate
advanced

About the authors:

Verónica Puymalie

Experienced IT & QA professional with
more than 9 years in the industry. She
has a unique experience in combining
her development skills, database
knowledge and testing understanding in
large projects.

She has worked in several application
domains and has a wide vision in the IT
field as well as an strong experience on
QA field, Test Case Design & Execution,
Functional Testing, Regression Testing
and White/Black box Testing.

Main areas of interest are focussed on
Quality Assurance and Business Process
Testing Methodology. Contact: +598 2
5185600, veronica.puymalie@tcs.com

Diego Marín

Diego has
a degree in
Systems Analysis
with more than
13 years of
experience in the
IT field. He has

been under different roles in the SDLC,
from Analyst to Tester. During the latter
years he has specialized in testing, and
with main focus in Test Management.

He also has coached several teams in
Testing Fundamentals; a task that he
loves and do with passion.

He is an ISTQB Certified Tester and
has worked in different fields, including
Banking, Retailing and Healthcare. He
has also worked for the United Nations
for a specific program, under the Social
Strengthening Areas for elder people in
Uruguay. He has also lead TPI sessions
for different testing departments.

He has led several testing teams under
different locations, both functional and
automation teams. He is currently leading
a team which works under the Business
Process Testing methodology in Tata
Consultancy Services.

Contact: +598 2 5185600,
diego.marin@tcs.com

Marcelo Arispe

Marcelo has worked at Software
Assurance area for the last three and

a half years. During this time he has
performed several tasks: From designing
test plans, verifying requirements,
conducting manual and automating
software verification. He worked under
different roles from Tester to Test Lead,
which allowed him to manage a group of
people and achieve Team goals.

He has a Bachelor Degree on Systems
Engineering, and he is an ISTQB
Certified Tester. Among his experience,
He has also acquired knowledge in
the Web Development and Database
Management, by which he has developed
strong skills at these areas. He bilingual
between English and Spanish, and he
also has working knowledge of French
and Hindi. He is familiar with Microsoft
and Open source technologies as well
as various peripherals, data entry and file
updating.

Contact: +598 2 5185600,
marcelo.arispe@tcs.com

Abstract

Business Process Testing (BPT) is an
approach, developed by Hewlett Packard
for its Quality Center Tool, with the aim of
reducing gaps, most commonly present
between Development and Business
Analysis.

In this paper we will describe how this
new approach can be used to improve
the Software Development Process by
achieving a more detailed, comprehensive
and effective Quality Control process.

Introduction

Hewlett Packard (HP) has a single
sentence to describe the main use of

Software engineering

23

their Business Process Testing (BPT) in
a company as part of their Quality Center
Tool:

“Bridge the quality gap between subject-
matter experts and quality engineers.” (1)

With this single sentence, HP tries to
catch the attention of IT Managers to
buy this new approach to reduce the
miscommunication between Subject
Matter Experts (SME) and Quality
Engineers.

BPT, in fact, provides a very powerful
and versatile way to develop Test
Cases starting from Use Cases by the
introduction of the Business Components
concept. The objective is to focus in
Business Process, describe those
using Business Components and finally
generate the Test Cases that will cover
that Business Process.

A Business Process is defined as a series
of components which are built of steps;
those components with their steps, when
they are executed together, they create
a value to the customer or to the product
being shaped.

The way that BPT has to implement
this new approach is by the use of their
granular unit: a Business Component.
There is a direct correlation among the
screens that are part of an application,
and the Business Components that will
enable the creation of Test Cases. The
work flow that makes this mechanism to
work may be described in the following
steps:

The new QC module called “Business
Components” enables the user to
create and manage reusable Business
Components.

The Test Plan module enables the user
to build a Test Case by dragging and
dropping the Business Components into
a new Business Process Test item. This
will enable the user to debug those Test
Cases and generate all the needed data
to make different planned scenarios.

The Test Lab module enables the user to
run Business Process Tests and manage
the results.

Apart from this, there is another important
fact that makes BPT a unique approach

Figure 1 Testing Process Sample

to enhance and optimize the work that
is done in the Quality Area: the direct
connection between Quality Center and
Quick Test Professional (QTP). QTP has
the feature of automating a Business
Component, hence, once the Test Case
is developed using the BPT feature, the
Test Case is instantly automated.

We will cover all these features, along
with the advantages and disadvantages
of this new approach, and what was the
need for its creation in the present White
Paper.

BPT as part of natural
evolution

The Software Industry has had several
changes last years and old testing
approaches that worked yesterday do
not seem to work properly for today’s
agile business environments, data
warehouses, cloud computing applications
and SOA systems. Nowadays, systems
are aligned to serving business process
and to improve data integration as well
as disparate department applications.
All these practical approaches, claim for

Software engineering

24

automated testing to enter to the scene.
So due to the accelerating nature of this
evolution, the migration to test automation
from conventional manual testing is a
necessary step for business success.

Another key aspect that HP is focusing
on, with this new Business Process
Testing methodology, is that by aligning
testing to the Business Process, there is
a direct prioritization of functionality units
being developed to business needs.
With this approach, the most important
components will be available, tested
and working as expected, sooner in the
testing process.

The diagram below provides a simple
overview of a testing process:

Apart from the above mentioned items,
one of the most challenging problems
that nowadays IT projects face is the
one related to communication, or
better said, miscommunication. This
miscommunication is not only related
to the natural communication gaps
that the IT crew has with the business
counterpart, but also related so other
additional facts that affect the relationship
among team members. For example,
in today’s environment, it is common to
have distributed teams, and due to this,
communication plays a key role and
may be a factor of success or failure for
a project. Under such circumstances,
Business Process Testing has an
important role as a tool to try to reduce that
communication gap among developers,
testers, test analysts and Subject Matter
Experts.

BPT leverages on the Keyword Data
Driven technology that allows test cases
to be represented in way in which SME’s
can collaborate effectively with QA and
test without having technical skills. In this
way functional subject matter experts can
build, data-drive, execute and document
tests without any programming knowledge
and find the automation frameworks
more handy & meaningful due to their
continued involvement right from the
beginning. This turns Test Automation
towards being more business driven.

What is required for BPT

Let analyze if BPT really helps in bridging
the quality gap between subject matter
experts & test automation engineers.
Here are some facts to ponder before

carrying on with the process of finding
the true about this new trend.

The Yankee Group stated that about 90%
of business mission-critical business
processes have been automated by
enterprise application. (5)

Besides, Gartner establishes that 80%
of applications are not tested in a proper
manner before they are released into
production. However, pre-production
testing is taking place, but it may lead to
useless results if it is not focused in the
business process. (5)

The 80% of the software development
costs of a typical project are spent on
identifying and fixing defects. (5)

With the above information in scope, it is
clear that focusing on business process
is a must for today’s environment.

Notwithstanding this, there are other
reasons on why to go for the BPT
approach, as shown in Table 1 - Other
reasons to focus on a new methodology.

Negligible involvement of the SME due
to the high technical expertise.

Reusability and maintenance as a big
issue.

Automation can start as early as it is
necessary because they have to wait
until the application is delivered to
QA.

Defects being found in production
instead of by your functional testing
team that also hurts QA group
credibility.

Table 1 Other reasons to focus on a
new methodology

Along of these reasons, Business
Process Testing is able to solve
some of these persistent problems by
simplifying and speeding up the testing
software process by using Business
Components.

System model

As you can observer in Figure 2 - BPT
Interaction with Traditional Automation,
QTP Experts can take part in the
process only in some activities, leaving
other tasks for Testers and SME’s.

Create Components in Quality
Center BPT module

The creation process for a Business
Component in Quality Center is done
via the BPT module1.

The steps to create a Business
Component are:

1. Create Initialization Component,
where the user can detail the
Description, precondition and post
condition for each component.

2. Insert Input and Output Parameters.
See Figure 3 - Parameter Definition in
Quality Center.

3. Create steps for the parameters
detailed.
1 The information provided in this white paper is

related to Quality Center, Version 10.0.

How to create a BPT Test
Case

The creation process for a BPT Test
Case is done from the Test Plan module
(as in a manual Test Case).

The steps to create a BPT Test Case
are:

1.Create New Test Case

The creation of a Test Case includes
the Name, Test Type, Preconditions
and Objectives. (Figure 4 - New BPT
Test Case shows how to define a BPT
Test Case).

2. Drag & Drop Components to
“Assemble” the Test Case

This is the main part where the
components create the skeleton of the
Test Case. (Figure 5 - Creating a BPT
Test Case from Business Components)

3. Link Parameters between
Components

This part is the entry of specific data
into the components of the Test Case
(Figure 6 - Specifying Data for a BPT
Test Case).

Advantages

1. Once a Business component is

Software engineering

25

Figure 2 BPT Interaction with Traditional Automation (3)

Figure 3 Parameter Definition in Quality Center

Figure 4 New BPT Test Case Figure 5 Creating a BPT Test Case from Business Components

created, it can be reused as many
times as required for each test case, in
any cycle of the Testing Process. That
is why Regression Testing can be much
more efficient with BPT due to this
capability.

2. The design of Business Components
is useful to line up Test Cases with
Functional Requirements, even further
to a deeper detail level, such as default
values, type of fields, etc.

3. One tester can support more
developers in a team because of the
efficiency BPT provides.

4. Due to its high standardization
level, Testing process gets more
robust, regarding to the line and
path all stakeholders have, such as
development, business analysis or
quality assurance.

5. Automation process improves its
performance and efficiency due to the
standardized way Business Components
offer to it. Scripts written to execute Test
Cases built from Business Components
are also implicitly standardized.

6. In benefit of making life easier,
Quality Center provides additional tools
or plug-ins to handle Requirements,
Test Cases or Defects, for example by
providing already-made Microsoft Excel
spreadsheets that have the capability to
download or upload those work items.
The current version of Quality Center
does not provide an already made
tool to upload Business Components.
However, the OTA API that comes with
Quality Center allows a user to create a
macro that fulfills those requirements.

Disadvantages

1. The creation of Business Components
implies the thorough description of
every data Item that will be used on
every screen of the application. This
will imply that every label, tool tip text,
drop down list’s content, grid’s contents,
etc. need to be fully described. Due to
this reason, the task of creating every
Business Component is a very time
consuming task.

2. In the current version of Quality
Center, there are no reports
available for Business Components.
Furthermore, the database schema has

naming conventions for the Business
Component which are not clear. So
reporting is hard to accomplish for this
new module.

Conclusions

During our own experience and use
under the BPT Methodology we found
the following conclusions:

1. We were able to improve our
communication with Development,
Business Analysts, and Subject Matter
Experts by speaking the same language
of Business components. Making it more
clear, detailed and comprehensible.

2. Automation process came even
more easy and quick to implement after
the test cases based from business
components were designed due to
the completeness of requirements
specification and analysis.

3. As an overall conclusion, we can
determine that the use of the BPT
methodology makes communication
among the different Testing stakeholders
more reliable and easy, as well as
comprehensive, in terms of reducing
the gaps that are generally present
on a team with different technical
background.

4. As a final point, there is a seamless
integration between Automation and
BPT components, and that is the basic
milestone, the key that opens the door
to success, to actually reduce the time
that is commonly present from the

delivery of a particular feature, till its
automation and finally implementation
using any automation tool is done.

References

(1) HP Business Process Testing
Software Datasheet https://h10078.

www1.hp.com/cda/hpdc/display/
main/download_pdf_unprotected.
jsp?zn=bto&cp=54_4000_100

(2) Michael Giacometti, HP customer
perspective white paper: Best practices
for implementing HP Quality Center
software, 2007, P 3.

ht tp: / /www.sqa. i ts .s ta te .nc .us /
l i b r a r y / p d f / H P % 2 0 Q u a l i t y % 2 0
C e n t e r % 2 0 I m p l e m e n a t i o n % 2 0
Best%20Practices.pdf

(3) Span Technologies BPT

w w w . s p a n t e c h n o l o g i e s . c o m /
SPANTechnologiesMercuryBPT.pdf

(4) Optimizing-manual-testing-with-
hp-business-process-testing-software-
whitepaper.

www.hp.com

(5) KDT - Sapient Business Process
Testing Leveraging

http: / /edge.sapient.com/assets/
ImageDownloader/150/Sapient_
BusinessProcessTesting.pdf

Software engineering

26

Figure 6 Specifying Data for a BPT Test Case

27

Software testing

Ambiguity of defect
severity definition

Author: Andrey Konushin, Julia Salnikovabasic

intermediate
advanced

About the authors:

Andrey Konushin

Expert in software testing and quality
assurance. ISTQB Certified Tester,
Advanced Level.

Master of techniques and technologies
in informatics and computer engineering,
Vladimir State University, Russia. His main
research interests include information
management and system analysis both in
software testing and related fields.

Quality assurance expert and test manager
at software development companies with
big experience in tens of projects. CEO
of “Knowledge Department Russia” – a
coaching and consulting company, offering
its services worldwide.

Since 2006 senior lecturer at Information
Systems & Information Management
chair of Vladimir State University. Andrey
developed and implemented the “Software
testing foundations” course for the
University based on ISTQB Foundation
Level Syllabus.

One of the founders of the Russian
Software Testing Qualifications Board.
Since 2006 he is the President of the
RSTQB.

management is an organizational part of
development process, but bug tracking
system is implementation tool of this part.
It seems, why investigate complex bug
tracking systems, when defect description
can be recorded into, e.g. Excel, and
not to make additional efforts on buying,
setting up and support of these complex
systems? Mostly, information about
defects are represented with a set of pre-
defined fields, which serves for structuring
this data. Such structure allows performing
more valuable analysis of defects data.
Moreover, defect usually has its lifecycle
– set of states through which defect must
pass to be fixed. Considering all these
factors, it is clear that just excel sheets are
not enough. However, some organizations
still use Excel for defect tracking. This,
undoubtedly shows maturity level of these
companies.

In this article we will look at such defect
attribute as severity. Working in different
companies, projects and with different
customers, misunderstanding of role of
this attribute in defect description was not
a surprise. Often, saying severity, people
mean urgency of defect fixing, its priority.
In fact, severity is the degree of impact
that a defect has on the development
or operation of a component or system
[IEEE 610]. Severity is an important
attribute from business point of view for
which system is being developed. Exactly
severity defines the impact of the defect
on business-process. Usually, severity
is defined by scale from 1 to 4. Different
organizations in different projects and
different bug tracking systems may use
different scales, including the difference
in “direction”: “1” in one organization
may be a higher severity, while in other
organization it may mean vice versa – the
lowest severity. Let us don’t stop on this
specifics.

Julia Salnikova

23 years old. University degree in
informatics and economics, specialization:
Applied Computer Science in Economics,
Vladimir State University, Russia.

Software tester at KAY-COM, information
technologies company (http://kaycom.
ru/). Julia has created a sophisticated sub-
system of quality control in accordance
with proven standards of quality in the
information system of KAY-COM project
management.

Bug tracking system is the central part of
testing and programming communication
during the software development.
There are a lot of bug tracking systems
existing, from the simplest and free
to integrated tracking environments
of high price. However, bug tracking
system itself is the technical tool for fault
information management. Such tool
allows to formalize and automate defect
management process, which is important
part of overall development process. Both
fullness and confidence of system faults
information and order of fixing of these
faults are depend on this tool. Thus, defect

Software testing

28

Different understanding of the term
“severity” leads to formalization of criteria
by which severity must be defined.
However, in practice, it is impossible to
define these criteria for the company and
use them in all projects. These criteria
highly depend on the scope of project.
Let’s have a look at the system of attributes
which was developed in one of companies
where we used to work.

Critical defect

• No complete functionality of the system
(the user cannot perform the work) and
there is no workaround of this problem.

• The application cannot continue working
(buzzing).

• Application closed without warning.

• Compromise system security or integrity
of user data.

Major defect

• Not available functionality, but there is a
workaround.

• An unhandled exception are occurred.
Average defect

• Unexpected but handled by developer
exception.

Minor defect

• The defect of non-business logic
(insignificant defect does not lead to a
breach or loss of user data).
• Deficiencies of user interface.

There are, of course, other classifications,
but for clarity, we consider it such.

With such a scale, it is easy to determine
the severity of the defect. Exceptions
are rare cases where, for example, a
grammatical error in the communication
can lead to misunderstandings of the
message, which in turn may lead to
incorrect follow-up. Nevertheless, this
classification covers uniquely the majority
of new defects.

Such a classification has worked well so
far, have not had to deal with systems in
which data and user operations are more
important than the actual running of this
operation. This applies, for example, to

banking systems, in which an incorrect
calculation of the charge on transactions
may cost a few hundred EUR to the
client (and sometimes thousands), but
more critically is that the operator cannot
even guess that the charge is calculated
incorrectly. Therefore, for such systems
it is better not to perform an illegal
operation, than do it wrong. This not
applies to other, less critical systems.
Consider several examples of defects of
different applications in the context of this
classification.

Example 1. Internet shop. When you click
"More about the book" an error message
appears.

In terms of the classification and the
criticality of the system itself this is the
failure of one of the functions of the system.
In this case, severity is the highest.

Example 2. Automated teller working
place in bank branch. After the registration
and execution of currency exchange
operations, order is generated incorrectly.
According to the classification, such a
defect can hardly be regarded as the
most critical, because the operation
is completed successfully, no error is
raised. Nevertheless, in terms of business
process - lack of cash order is critical,
because the operation cannot be legally
confirmed without it.

Example 3. Banking system. After
removing service providers, the button
“Apply Changes” on the form is not
enabled, although it should be.

According to the classification, it is a
critical defect, because the operation is not
available. Nevertheless, it is more correct
to assign this defect severity as “major”

because the inability to delete records has
almost no effect on the business process
or user data (unless there are not many
records and it is impossible to work with
the application, which is unlikely in this
context). In contrast to the operations that
lead to loss of money from account or any
other user data.

From these examples, it becomes clear
that the criteria for determining the severity
of the defect are ambiguous and highly
depend on the scope of the application.
At first glance, the same errors in the
functioning of the application in fact have a
different impact on be automated business
process. Exactly this influence determines
the severity of the defect. Nevertheless,
the definition of severity should not be
different for different members of the
team of one project, because it can lead
to distortions in the prioritization of bug
fixes and new development. Obviously,
a “common denominator” is needed and
static criteria of severity cannot be used,
these criteria should be evaluated and
modified as necessary.

And as we said above, the prioritization of
found defects fixing, of course, must take
into account the severity, but the severity
should not be the sole factor in determining
the queue of correction. You should
take into account such factors as team
workload, effect of correction of the defect
to other parts of the application and other
factors. Defining of priority of defect fix is
a more sophisticated and informal task
which lies on the shoulders of dedicated
staff, in contrast to the severity, which can
be set by any member of the team who
found the defect: from the developer to
the customer. And for a more structured
work it is desirable to formalize definition
of severity.

29

Rex Black on Software Testing Best Practices

Agile When It Works
Author: Rex Black

basic

intermediate
advanced

So, being a contrarian, I will do the
opposite: With the exception of the
paragraph above—where I poured well-
earned scorn on people who write bad
things about other testers—this column
will be 100% good news. I will discuss
testing best practices that my associates
and I have observed other smart people
doing. That’s right. No negativity and no
bragging about myself either. A simple
theme: What other people do right when
they test and why we love it.

I want to start with Agile testing when it
works. No, I’m not recanting. Yes, I’ve
written about the testing challenges of
Agile, and I stand by what I wrote. Yes,
I can talk about testing worst practices in
some Agile teams, and I might in some
future article—but not in this column. In
this column, I focus on what’s right about
Agile. Here are five testing best practices

company, RBCS, you know that we
spend time with clients around the world,
in every possible industry, helping people
improve their testing with training or
consulting services, or doing testing for
them with our outsourcing services. Our
work gives me insights into what goes on,
the actual day-to-day practice of software
testing.

Now, not all of what goes on is good.
There are bad practices, and we help
clients fix those. But you don’t need
me to write about what not to do. Aren’t
there enough scolding bloviators in our
business? With a click of your mouse,
you can read these people’s disdainful
rants about testers they think are stupid,
testers they think are in the wrong
“school of testing,” testers they love to
hate. Lecture, scold, rant, bloviate. How
tedious!

About the Author:

With a quarter-century of experience, Rex
Black is President of RBCS (www.rbcs-
us.com), a leader in software, hardware,
and systems testing. For over fifteen
years, RBCS has delivered consulting,
outsourcing and training services to clients
ranging from Fortune 20 companies to
start-ups. Rex is also the immediate past
President of the International Software
Testing Qualifications Board and the
American Software Testing Qualifications
Board. Rex has published six books which
have sold over 50,000 copies, including
Japanese, Chinese, Indian, Hebrew, and
Russian editions. He has written over
thirty articles, presented hundreds of
papers, workshops, and seminars, and
given about fifty speeches at conferences
and events around the world. Rex may be
reached at rex_black@rbcs-us.com.

Greetings, and welcome to my quarterly
column on software testing best practices.
When I was asked to write this column, I
had to choose the approach, the theme.
The writers’ aphorism says, “Write what
you know.” So, what do I know?

Well, if you know me and my consulting

we’ve found in Agile done right:

Unit testing. Okay, it’s true that most
programmers, even Agile programmers,
still have a lot to learn about proper
test design. But if you’re a professional
tester like me, you have love hearing
programmers talk about the importance
of unit testing. We all know that unit
tested software is easier to system test.

Static analysis. Not only do smart Agile
programmers like unit testing, they like
static analysis, too. Coding standards are
hip again. Cyclomatic complexity is back.
Writing more testable, more maintainable
code: that’ll make testers’ lives easier in
the long run.

Component integration testing. This
under-appreciated test level exists—on
properly run Agile projects. You can
go years on sequential-model projects
without seeing component integration
testing. However, on a good Agile teams,
people look for integration failures, and,
because of continuous integration, the
underlying integration bugs aren’t hard
to find.

Tools, tools, tools—and many free. All of

this talk about unit testing, static analysis,
and component integration testing would
be just that—talk—without tool support.
Fortunately, the Agile—err, what should
we call it?—movement, revolution, fad,
concept, pick your term, has brought
with it a lot of tools to support these best
practices, along with other best practices.
For those of us without unlimited
budgets—and isn’t that all of us?—a lot
of the best tools are free, too.

Tester and developer teamwork. At the
beginning of our latest assessment, I
had a great conversation with a test
manager who works on Agile projects.
Among areas of agreement: our shared
joy at the death of a bad idea. The bad
idea in question was this: the idea that
the role of the test team is the quality
cop, the enforcer, the Dirty Harry to the
punks of the software team. “Seeing
as I can refuse to approve the release,
you gotta ask yourself one question: Do
you feel lucky, programmer?” Instead,
we see more people working together,
collaborating for quality, and that’s
especially true on good Agile teams.
Just this morning, I spent three hours
talking to two programmers—real
seasoned professionals with years in the

field—talking to them about testing. The
testing that they did. In fact, it wasn’t
so much about testing, but testing as
an essential tactical element in a larger
strategy for higher quality code. They
really knew testing, and they knew how
the Agile approach and tools were helping
them to achieve better testing and thus
better code. At the end of our talk, I
mentioned how much I enjoyed talking
to programmers about good testing and
good code.

He replied, “Yeah, we spend a lot of time
around here talking to each other about
that. How to be better craftsmen. How to
test better. How to build better code.”
Wow. If the entire methodology, the
lifecycle, the tools, and every other aspect
of Agile fades away, leaving behind
only the habits of programmers serious
about code quality, and testers working
cooperatively with them to achieve it,
that will be a signal achievement in the
software engineering profession. Best
practices, indeed.
So, there are the first five best practices.
What comes next? That depends on
which great practices my associates get
to see in the next three months. See you
then.

Rex Black on Software Testing Best Practices

30

31

Software testing

Metrics for Software
Testing: Managing with
Facts:
Part 1: The Why and How of Metrics

Author: Rex Black

basic

intermediate
advanced

can measure matters, and not everything
that matters can be measured.” To me,
such remarks are like questioning the
value of literacy, or saying that reading is
unimportant because you don’t need to
read to appreciate good art.
Metrics allow us to measure attributes.
Metrics allow us to understand. Metrics
allow us to make enlightened decisions.
Metrics allow us to know whether
our decisions were the right ones, by
assessing the consequences of those
decisions. Metrics are rational.

Plus, you really don’t have much
alternative to metrics usage. The other
option is to base your understanding,
decisions, and actions on subjective,
uninformed opinions. This is not a sound
basis for management.

You might be thinking; “I’m a reasonable
person, and I make all sorts of smart and
reasonable decisions in my everyday life
without metrics.” Well, maybe. First off,
you might have grown so accustomed to
all the metrics we have around us that
you didn’t notice them. When we drive,
we refer constantly to a key metric:
speed. When we shop, we mostly use
the metric of price. In many situations,
when you find yourself without the usual
metrics, you might feel lost.

Second, when people make decisions or
reach conclusions without metrics, based
on what sounds reasonable, they can be
wrong. My favorite example of this comes
from the Greek philosopher, Aristotle.
Aristotle was a smart fellow, and he said

American Software Testing Qualifications
Board. Rex may be reached at

rex_black@rbcs-us.com.

Introduction

At RBCS, a growing part of our consulting
business is helping clients with metrics
programs. We’re always happy to help
with such engagements, and I usually try
to do the work personally, because I find
it so rewarding. What’s so great about
metrics? Well, when you use metrics to
track, control, and manage your testing
and quality efforts, you can be confident
that you are managing with facts and
reality, not opinions and guesswork.

When clients want to get started with
metrics, they often have questions. How
can we use metrics to manage testing?
What metrics can we use to measure
the test process? What metrics can we
use to measure our progress in testing a
project? What do metrics tell us about
the quality of the product? We work with
clients to answer these questions all the
time. In this article, and the next three
articles in this series, I’ll show you some
of the answers.

Why Should We Have Metrics?

Sometime I hear people asking why
metrics are necessary, or worse
yet disparaging metrics with smug
comments like: “Not everything that you

About the Author:

With over a quarter-century of
experience, Rex Black is President of
RBCS (www.rbcs-us.com), a leader
in software, hardware, and systems
testing. For sixteen years, RBCS has
delivered consulting, outsourcing and
training services to clients ranging from
Fortune 20 companies to start-ups.
Rex has published six books which
have sold over 50,000 copies, including
Japanese, Chinese, Indian, Hebrew,
and Russian editions. He has written
over forty articles, presented hundreds
of papers, workshops, and seminars,
and given about seventy-five speeches
at conferences and events around the
world. Rex is also the immediate past
President of the International Software
Testing Qualifications Board and the

Software testing

32
a lot of smart things. However, he also
said that heavier objects fall faster than
lighter objects.

That sounds reasonable, and anecdotal
evidence like feathers and stones are
all around us. Two thousand years later,
though, Galileo dropped two cannonballs
of very different weights from the Leaning
Tower of Pisa. Both hit the ground at the
same time. Simple experiment. Simple
metric. Two thousand years of misguided
thought overturned with a single thud.

In my consulting work, I often tell clients
that the most dangerous kind of mistake
is the mistake that sounds reasonable.
Something that is wrong and that sounds
stupid is harmless, because people will
reject those statements out of hand.
Reasonable-sounding mistake, that just
might trick people. In fact, we’ve seen
that happen.

Here’s an example. We do a number of
test process assessment engagements
for clients, and one of these clients makes
complex industrial-control systems that
run oil refineries, pharmaceutical plants,
and other critical equipment. In our
assessment, we found that they had a

Figure 1: Data Disproves Widely-held Opinion

very high rate of bug report rejection. Bug
report rejection occurs when the report
turns out to describe correct behavior,
rather than the symptom of a bug. When
the bug reporting process is working well,
the bug report rejection rate should be
under five percent. In this case, we found
the client had about 20% of bug reports
rejected as not due to faulty behavior.
When I asked why the rate was so high,
almost everyone believed that the reason
was insufficient end-user experience
using industrial controls.

It sounds reasonable, huh? People who
don’t understand complex systems might
not draw the right conclusions about what
constitutes correct behavior, right? Well,
it turns out that the data easily disproved
this reasonable—but mistaken—opinion.
I created the scatterplot shown in Figure
1. The scatterplot shows the percentage
reports rejected, on a tester-by-tester
basis, versus the number of years of actual
plant experience each tester had. As you
can see, the R2 value—which measures
the level of statistical correlation—is very
close to zero. So much for reasonable.

Metrics are valuable whatever we are
doing, but I think they are particularly

important for testing. This is true because
testing by itself, in isolation from the rest of
the project, has no value, but it produces
potentially valuable information. In order
to obtain the value, this information
must be generated and communicated
effectively. That involves some form of
testing metrics.

Effective communication is communication
that serves a purpose. There are three
fairly common goals of communication
of test information, and all three are
enhanced by metrics.

We might want to notify people of the
status of testing. For example, we might
want to make people aware of the bug
backlog that has accumulated. In such a
case, it’s more appropriate and powerful
to say, “We have 24 bugs remaining to
close,” than to say, “There are still bugs
in the backlog.”

We might enlighten people as to the
impact of some attribute of the process.
For example, we might want to help
people understand that we are working
inefficiently because many bug fixes fail
confirmation testing. It’s better to be able
to measure and report the number of lost

33

Software testing

person-hours resulting from confirmation
test failures than to simply exclaim,
“It’s very frustrating and inefficient to
deal with all these lousy bug fixes that
the programmers send us!” Of course
it’s not always possible to evaluate an
exact number of lost person-hours,
however even an approximate value will
shed some light on the situation we are
facing.

We might also want to influence
people to choose a particular course of
action. Going back to the example two
paragraphs ago, where we have a large
bug backlog, we might show a breakdown
of bugs by severity, and then propose a
bug triage meeting to defer unimportant
bugs in order to focus attention on the
more important ones.

For our clients that are following best
practices in their use of metrics, we see
that some metrics are reported regularly
as part of status reporting. These are
sometimes called dashboards. They can
be process, project, or product focused.
Such dashboard metrics might have as
their goals notification, enlightenment,
and/or influence. Other metrics are
reported as needed, after some analysis
of a situation that has arisen. Such
metrics would more commonly have
enlightenment (why did the situation
happen?) and influence (what should we
do about the situation?) as their goals,
than merely notification.

How Should We Develop
Metrics?

So far, we’ve seen why metrics are
useful, how metrics help to deliver the
value of testing, and how metrics can
serve specific communication goals.
What metrics should we use, though?
Is it enough to simply adopt the metrics
that a tool like Quality Center produces?
In my experience, such test management
tool metrics are not sufficient, and in
some cases are counterproductive. Such
tools produce large amounts of very
tactical metrics that can prove useful to
test managers, but which are typically
overwhelming and even misleading to
people without a testing background.
While test management tools are valuable
to collect the raw data behind metrics,
you should use a top-down approach
for defining metrics, not a bottom-up
approach.

By “bottom-up approach” I mean letting
the tool define the metrics you will report.
By “top-down approach” I mean starting
with a clear picture of the objectives you
are trying to achieve, and then deriving
the metrics from that.

Identifying the objectives for testing
and quality can prove challenging for
some organizations, because not many
organizations are used to thinking about
what the testing and quality objectives
are. I realize this statement sounds
strange, but it is true. Ask yourself: Do you
have well-defined, realistic, documented,
agreed-upon objectives for your testing
process? When we start working with
clients, the answer is usually “no”.

Typical high-level objectives for the test
process as a whole are:

• Find bugs, especially important ones

• Build confidence in the product

• Reduce risk of post-release failures

• Provide useful, timely information about
testing and quality

You might have other objectives, and
that’s fine.

Given a defined set of objectives, we
can ask three types of questions about
the degree to which we achieve those
objectives:

• To what extent are we effective at
achieving those objectives?

• To what extent are we efficient at
achieving those objectives?

• To what extent are we elegant at
achieving those objectives?
Let’s define what these concepts of
effectiveness, efficiency, and elegance
mean with respect to the achievement of
objectives.
Effectiveness has to do with producing a
desired result, in this case the objective.
Efficiency has to do with producing
that desired result in a way that is not
wasteful and, ideally, minimizes the
resources used. Of course, at some
point, trying to increase efficiency starts
to reduce effectiveness, as anyone who
has driven a small, highly fuel-efficient
vehicle knows.

What about elegance? Elegance has

to do with achieving effectiveness and
efficiency in a graceful, well-executed
fashion. Elegance impresses. Elegance
work resonates as professional,
experienced, and competent.

Some people might ask, if we are effective
and efficient, why should we care about
elegance? Consider this example. Let’s
suppose that you go into a café to get a
cappuccino. You are in a hurry, and want
to quickly get your caffeine fix and go.
The line is short and the cost is low. The
wireless signal is strong and free, so for
the limited time you are waiting, you can
get some work done. Within two minutes,
you have your cheap cappuccino, it
tastes excellent, and you are out the door
with your to-go cup in hand. The café
effectively and efficiently satisfied your
objective. Are you happy?

Maybe not. What if the cashier was rude
and lazy, almost overcharging you for
the drink until you pointed out her math
error? What if the man making your drink
was dirty, smelled bad, and had long,
greasy hair that was clearly shedding
into people’s drinks? What if the place
as a whole was not very clean or very
pleasant to look at? In such a situation,
you would not consider the place a very
elegant way to satisfy a caffeine craving.
With the need for elegance established,
let’s return to the issue of metrics. We
should devise at least one metric each to
determine the extent of our effectiveness,
our efficiency, and our elegance. This
metric should be something we can
actually measure, of course. People
having an elegant experience probably
has a dopamine release in their brains,
but that’s not likely to be something you
can check easily. A better idea would be
a stakeholder satisfaction survey using
a Likert scale (e.g., asking satisfaction
levels ranging from very satisfied to very
dissatisfied).

In some cases, it’s very difficult to
measure something directly. In such
situations, you can use a surrogate
metric. As an example, suppose I gave
you a tape measure and sent you into a
parking garage to weigh the vehicles in
that garage. Could you do it? Well, you
can’t directly weigh the vehicles, because
you don’t have a scale. However, you
could use the tape measure to calculate
the volume of each vehicle. You could
use the volume as a surrogate metric for
weight, simply by making the simplifying
assumption of relatively constant density.

Software testing

34

In fact, if you were the owner of just one
of the vehicles, you could use the owner’s
manual in the car to determine the actual
weight. This would give you a known
density for one vehicle, and you could
then use that to calculate (via the volume)
the weight in kilograms or pounds for the
rest of the vehicles in the garage.

I’ll give one example of each type of
metric, direct and surrogate, in just a
few paragraphs. In subsequent articles
in this series, we’ll see many examples
of metrics, including direct and surrogate
metrics.

It’s important to say that it’s not enough to
just have a metric. We need to know what
constitutes a good measurement for that
metric. So, once the metrics are defined,
we should set a goal for each metric.
One way to set the goals is to measure
where you stand now. (This is sometimes
called baselining.) Another way to set the
goals is to compare yourself to industry
averages or best practices. (This is
sometimes called benchmarking.)

One way not to set goals is to pick
arbitrary, extreme values, though I’m
afraid this does happen. For example,
we have seen situations where tester
were expected to find 100% of all bugs,
while at the same time programmers
were expected to have zero bugs in their

Figure 2: Bug open and resolution trends

code. Both of these goals were instituted
in the testers’ and programmers’ annual
performance evaluations, respectively.
In this case, the managers had actually
made two serious mistakes. They
violated best practices for setting goals
for metrics and violated the rule that
process metrics should not be used for
individual performance appraisal.

With proper goals in place, you should
think about exceeding those goals. What
improvements could you implement that
would move the metrics towards higher
levels of effectiveness, efficiency, or
elegance? It’s certainly true that at some
point any process will have reached
adequate levels of optimization, but it’s
also true that it’s very rare for us to work
with clients on metrics programs and find
that everything is perfect the first time
we baseline the processes, projects, and
products.

So, we can summarize the process of
deriving metrics as follows:

1. Define objectives.

2.Consider questions about the extent of
effectiveness, efficiency, and elegance
with which we realize the objectives.

3.Devise measurable metrics, either
direct or surrogate, for each effectiveness,

efficiency, and elegance question.

4.Determine realistic goals for each
metric.

5.As appropriate, implement improve-
ments that improve effectiveness,
efficiency, or elegance as measured by
the metrics.

With the process clear, let’s look at two
examples of metrics devised following
this process1.

First, let’s look at one of the common
objectives for testing, finding bugs. On
a project, one of the key questions is
whether we are finished finding new
bugs. (This is often included as an exit
criterion in test plans.) As a metric, we
can plot the trend of bug discovery over
time during test execution. An example of
such a metric, at the end of the project, is
shown in Figure 2. Our goal is to see the
flattening of the cumulative bug opened
curve (the upper line in the graph).

Let me point out that we also have
another project objective, the resolution
of known bugs, which is also shown in
this metric (the lower line in the graph).
It’s not unusual to find ways to combine
metrics on a single graph or table, and
this combination can be quite useful to
compare and contrast process, project,

35

Software testing

or product attributes that are illustrated
by the two or more metrics shown.

This chart also helps nudge us towards
two obvious improvements. If we were to
find (and resolve) bugs earlier, we could
finish the project earlier. So, how can we
shift the bug opened and resolved curves
left, towards the start of the project? How
can we shift the total number that we
discover downward on the vertical axis?
Fewer bugs, found and resolved earlier:
that sounds smart, doesn’t it?

1 For a complete discussion of this process, you can

read my chapter in the book Beautiful Testing

Next, let’s look at another common
objective for testing, building confidence.
We would want to achieve a significant
level of confidence prior to releasing
software to our customers. However,
how can we measure confidence directly,
as confidence is a state of mind? For
confidence, we can use coverage as a
surrogate metric: the more thoroughly
tested the product is, the more confident
we can be that the system has no
surprises in store for us (or the customers
or users) after release. Now, coverage
is a tricky concept, because coverage
has multiple dimensions, including
code coverage, design coverage,
configuration coverage, test design
technique coverage, requirements
coverage, and more. Certainly, for higher
levels of testing such as system testing
and acceptance testing, a key question is
whether any requirements have identified
failures. So, our metric can include three
elements:

• How many requirements are completely
tested without any failures?

• How many requirements have failures?
• How many requirements are untested?

These are typically measured as
percentages, as shown in Table 1. At the

Table 1: Requirements Coverage by Area

end of testing, the goal is to test 100%
requirements, with no known must-fix
failures at the end. As an improvement,
we can look at ways to reduce the
percentage of requirements that fail in
testing when first tested.

What Else is True of Good
Metrics?

Lots of organizations have metrics
programs, but the metrics are not always
very good. This is not always due to
a failure to follow a good process for
developing metrics, such as the one
outlined above, though certainly bad
metrics-development processes are a
major contributor. What else can we say
about good metrics?

Certainly, we want our metrics to be
simple and effective. Simple means not
just simple to gather and calculate, but
also simple to understand. Effective
means that the metric is obviously
and actually connected to parts of the
software process in such a way that
we know what actions to take to move
the metric in the desired direction. This
property is something one of my clients
refers to as the “so what?” question for
metrics.

Since we were just on these topics,
metrics should be efficient and elegant,
too. Efficient means that we can produce
the metric without an excessive amount
of work; the effort required to produce an
efficient metric is repaid by the value we
receive from that metric. Elegant means
that the metric is seen by the audience as
a pleasing and smart way to present the
information.

So, what is true of metrics programs
that have simple, effective, efficient, and
elegant metrics?

Such a set of metrics are useful,

pertinent, and, especially, concise.
While it can be tempting to measure
absolutely everything, you should avoid
too large sets of metrics. Such metrics
will prove too difficult to measure in
practice (and thus inefficient) and
usually very confusing to participants
(and thus inelegant). To be clear, there
is value in considering a large variety of
metrics when first setting up your metrics
program; however, once implementation
and regular measurement starts, you
should settle on a limited number.

That said, it’s also important that the
metrics be sufficient in number and diverse
enough in perspectives to balance each
other. For example, consider again the
bug trend chart shown in Figure 2. I said
that we want the cumulative opened curve
to flatten, and for the cumulative resolved
curve to intercept the cumulative opened
curve, as we get to the end of testing.
That’s true, but by itself is out of balance,
because we might have stopped finding
new bugs when our testing is completely
blocked. In such a case, notice that
the requirements coverage metric I
mentioned as the second example
balances this bug metric, because the
requirements coverage metric will be
stuck below 100% tested and passed.

To make the metrics simple to gather,
calculate, track, and present, you must
consider the implementation of the
metrics. Automated tool support can be
very helpful in this regard. However, be
careful, because it’s easy, once the tools
get involved, to let the built-in metrics of
the tool determine what you will measure
(which is back to the “bottom-up” mistake
I mentioned earlier).

Implementation of the metrics should
also consider the proper way to track and
present a given metric, because proper
presentation is a major factor in making
a metric simple and effective. You have
three general options. Metrics can be

presented as snapshots of status at a
moment in time, as shown in Table 1.
Metrics can show trends emerging over
time, as was the case in Figure 2. Metrics
can also show the analysis of causes
and relationships between factors that
influence testing and quality outcomes,
as we saw in Figure 1. The formulation
of clear objectives and questions related
to them, as discussed earlier, should help
you make the choice here. However, if in
doubt, try various options and see which
one suits best to your process.

Making the metrics simple to understand
is not likely to happen without some
education. Part of a successful metrics
program is ensuring uniform, agreed
interpretations of the metrics. Clear
understanding of what the metrics tell us
helps to minimize disputes and divergent
opinions about various measures of
outcomes, analyses, and trends that are
likely to occur when we measure projects,
processes, and products. Remember
that reporting of metrics should enlighten
management and other stakeholders, not
confuse or misdirect them.

So, when presenting metrics, be sure
to provide objective analysis, tempered
with appropriate and balance subjective
interpretation. This is especially true
when trends emerge that could allow for
multiple interpretations of the meaning of
the metrics. Of course, we want to avoid
complex and ambiguous metrics that tend
towards such confusion, but the problem
is not merely one of metrics design and
stakeholder education.

When using metrics, we have to be aware
of and manage the tendency for people’s
interests to affect the interpretation
they place on a particular metric. Three
psychological dynamics tend to create
problems in the use of metrics here.
The first is confirmation bias, which
is the tendency to accept facts and
opinions that confirm our own existing
opinions, and reject other contradictory
facts and opinions. For example, the
project manager who is sure the product
will release on time (and whose bonus
depends on it) will have some significant
confirmation bias with respect to test
results showing a large and growing
backlog of bugs.

The second is cognitive dissonance,
which are the feelings of confusion,
anxiety, frustration, and even anger
that result from trying to simultaneously
have incongruous beliefs, attitudes, and
understandings. The project manager
who starts to understand the implications
of the bug backlog will soon experience
cognitive dissonance.

This leads to the third psychological
dynamic, which is transference. In
transference, a person transfers how
they feel about some particular situation
onto someone or something else. In this
case, the project manager might transfer
their anger over the delay in release
onto the test manager who is reporting
the test results, since it was that test
results which made the project manager
unhappy. Confirmation bias, cognitive
dissonance, and transference are all
common human psychological dynamics,

and you certainly cannot change human
nature. However, you should be aware of
how these psychological dynamics will
affect people’s response to metrics.

When thinking about using metrics for
reporting purposes, keep the goals in
mind: good testing reports based on
metrics should help stakeholders and
managers improve processes, guide the
project to success, and manage product
quality. You should check with the people
who are using the metrics to make sure
that the metrics are working for them.
I recommend to use the Likert scale
survey that I mentioned early to assess
the usefulness of the metrics for the
stakeholders.

Moving on to the Process

In this article, I offered a number of
general observations about metrics.
We’ve seen the importance of using
metrics to manage testing and quality with
facts. We’ve looked at the proper way to
develop metrics, top-down starting with
objectives rather than bottom-up starting
with tools. We’ve seen two examples of
metrics for testing. We’ve also looked at
some rules for recognizing a good set of
metrics.

In the next three articles in the series,
we’ll look at specific types of metrics.
We’ll start with process metrics, because
these metrics are the least used and least
understood of the three types. See you
in the next issue!

Software testing

36

37

Software testing

Validation Testing (the
good “Happy Path”),
Falsification Testing
(the Bad) and a word
about TDS Test Design
Specifications.

Author: Yves Souvenir

basic

intermediate
advanced

About the author:

Yves Souvenir
serves as an test
m a n a g e m e n t
c o n s u l t a n t
since 2004 with
contributions to the
testing departments
in the banking
industries, and the
establishment of independent testing
department at the European institution.
He holds ISTQB certificates and a master
of science of the University of Brussels in
Aerodynamics since 1991.

Introduction

I do not like when I hear the comment, “ A
user would never do that”, it is all a matter
of time and it will happen! Remember
the Airbus Crash leaving from Rio to
Paris flight AF 447? Four independent
speed indicators failed to operate due
to high altitude icing during the climb
of the aircraft. A problem know since

1947 before even jets where introduced.
Massive Ice crystals manage to block the
pencil shaped airspeed indicators on the
aircraft who are hot as hell.

It was not a user scenario so it was not
tested and pilots were not trained in
the simulator to handle the situation.
Nevertheless they would be able to handle
the emergency situation if software did
not ‘throw in the towel’ without having the
speed readings available and, if only the
pilots were able to override the system
like it is possible in the Boeing aircrafts.
A situation which doesn’t make life easier
to the pilots.

One alarm after another lit up the cockpit
monitors. One after another, the autopilot,
the automatic engine control system ..,
just like a Christmas tree. Consequently
the flight computers shut themselves off,
because of the Unknown situation. The
final minutes of flight AF 447 had begun.
Four minutes after the airspeed indicator
failed, the plane plunged into the ocean,
killing all 228 people on board.

We as tester should think beyond the
box and write down every possible

non-scope item (Falsification Test), and
never think about the above Sentence
which I was several times remarked by
a developer.
Test cases must include both Validation
tests (the Good, (the happy path)), test
that verify functionality using expected
input and Falsification tests (the Bad),
tests for user unexpected data to see
whether the program handles that data
appropriately.

Verification tests are necessary to prove
that the application works as intended
but the falsifications tests are More
Important.

Systems need to be Robust and handle
bad Data without Error.
One of the great things will be with the
enormous emphasis on security by using
Falsification test; defects found, are
resolved as ‘Customer would never do
that’.

The Happy path should always Pass.
One day I arrive at the office and found
a mail of Regis a colleague developer
in my inbox, telling that he worked on a
new component for a several days and

Software testing

38

wanted me to do the testing as soon as
the build came out.

My schedule was tight but I was excited
about finally being able to test the
component. In fact I wrote already the test
objectives and the purpose why the test
exist on a discussion and a presentation
Regis gave some weeks ago about the
new component.

Later that day indeed the new component
was installed in DEV, and I immediately
went to the menu bar on the left side
with the new component, entered some
common simple data and .. it didn’t
work!
Simple inputs should always work I
thought; simple inputs are the “happy
path” to me.

Because to me the Happy path must
always work I immediately assumed that
I must have done a mistake somewhere.
(I knew I went through steps a little too
fast and probably mist some selections.
So I tested it on another machine and did
is slowly. Unfortunately I had the same
results.

I tested some more times and but had
always the same result. So I called Regis
with the bad news.

When I described to him for the last then
minutes, he said hmmm, I made a change
just before checking the files in, but didn’t
think that it would make a difference.. I
guess I was wrong. It had a downstream
effect this change in the files.

Coming at this point, I wasted more than
an hour and felt irked and Replied to
Regis: “Seriously Regis the happy path
should always pass.”

I remember and repeat this phrase
every time something that should work
doesn’t!
About TDS (Test Design Specifications).
The Process of designing test is as equal
important as the act of designing end-
user software.

TDS, Test Design Specification is
applicable for both manual and automated
tests, an typically has the same review
process as other documents such as
specifications and design documents
used in the software engineering
process.

Because TDS describes both the
approach and the intent of the testing
process, it becomes an integral part of the
testing process throughout the entire life
of the product, especially during the post
ship phases of the software’s life when
a sustained engineering team might own
the product support.

TDS Test Design Specification for the
Falsification and Verification Tests.

• Overview/ the goal of the test and why
it exists!

• A strategy: this is high level approach, it
is risk based and proceeds from the risk
anaylsis.

• Internationalization and globalization

testing; act like the test will be read by
the world.

• Functional testing

• Component testing

• Integration/system testing

• Interoperability testing

• Compliance and conformance testing

• Performance Testing

• Security Testing’s

• Setup /deployment testing

• Dependencies

• Metrics.

Conclusion

The starting point as we all know must be
as early as possible.

Start in an early stage with the
Falsifications Test, Write the test
objectives and let them approve by the
Test Manager.

He will be very grateful of the combinations
of the selected test strategy, and he
describes the use of tolerances in the
system about the test execution with the
client.

The Normal data must always work!

39

Software testing

Data-Driven Testing with
Selenium

Author: Jacek Okrojek

basic

intermediate
advanced

About the author:

Graduate of the Faculty of Technical
Physics, Computer Science and Applied
Mathematics at Technical University
of Lodz, specializing in Network and
Telecommunication Systems, tester, test
leader, freelance developer, for more than
6 years involved in testing and developing
software in the Ericpol Telecom and as an
independent consultant, participated and
supervised the tests at basic, functional,
and system integration level , conducted
training software testing,

contact: jacek.okrojek@gmail.com

Introduction

Testing applications, as we all know, is
a time consuming task. We need to test
various scenarios and input data. It is
very common that many test scenarios
are the same, and the only difference
is the test data set. We can make our
work more efficient in such cases with
a Data-Driven Test (DDT) approach. In
this issue, I will present this concept and
demonstrate how it can be used with Se-
lenium and Python.

Data-Driven Testing concept

Imagine you have a web application with
user access control. Users can be as-
signed to different user groups and ac-
cess different sets of functions. Your goal
is to test the user authorization module.
The Selenium IDE allows you to record
actions needed for user authorization
and create general test scenarios. You
can export this test to Selenium’s sup-

ported programming languages. You can
copy and paste it for use in scenarios with
different input data. You can also add as-
sertions and check if the user can access
required functions and system behaves
correctly. This collection of tests can be
run using Selenium RC. There are a few
advantages of this approach, but, for me,
only one is really important – the fact that
you can run it during the automated inte-
gration test phase.

What happens if a new user group or
new functions are introduced to the ap-
plication? You will need to search all your
tests and update them where required, or
add new tests in the same way as earlier.
This is repetitive, error-prone and ineffi-
cient. Your life would be much easier if
you could separate the test data details
from the code. Since the test scenario is
always the same (logging in), it would be
good to introduce one parameterized test
method and execute it for different test
data sets.

This approach is called Data-Driven Test-
ing, so named because it describes the
key concept: the separation of test data
from test logic. It eases manipulation of
test data, e.g. when updating or adding
features to the application under test. The
implementation of the test logic should be
as flexible as possible. Test data can be
stored in any desired format: text, CSV,
spreadsheet files, or in a database.

As well as faster test implementation and
easier test data maintenance, this ap-
proach gives us one more advantage:
test data can be prepared by domain
specialists, which is important when the
system under test (SUT) has very com-
plicated or highly specialized logic.

Problem generalization

The most interesting aspect of web appli-
cations, from a tester’s perspective, are
web pages with forms. They are usually
the main way in which users pass data to
the server. In general, we can describe
testing of those pages as a three-step
process:

• Opening the web page.

• Filling form fields and submitting form.

• Checking that answer page contain ex-
pected results.

Since we would like to have as general
a framework as possible, we need to de-
sign it to be close to this general proce-
dure. We are going to use a spreadsheet
as a test data source, with the data orga-
nized as shown on Figure 1.

The first two columns are for adminis-
trative purposes and help us to identify
which tests are failing or passing. The
third column is a web-page URL.

The next columns are the user data (i.e.
the data that is coming in via the form).
The headers of these columns let us
identify form fields. Depending on the
situation, it could be a plain field name or
its XPath designator.

Finally, we have the user action and the
expected result. It is very important that
these are the last two columns, as our
code later will rely on this positioning.

By organizing data in this way, you are
able to adjust the framework to the tested
web page. You can add or remove col-
umns, and therefore change the number
of input fields to exercise. If we remove

40

Software testing

all columns between the URL and Action
column, we can also test formless web
pages that have only links.

A typical implementation of a test proce-
dure will look something like Listing 1.

1 sel = selenium(seleniumHost,

seleniumPort, browserStartCom-

mand, browserURL)

2 sel.start()

3 sel.open(...)

4 for k, v in actions.iter-

items():

5 sel.type(k, v)

6 sel.click(...)

7 sel.wait_for_page_to_

load(timeout)

8 results = result.split(“;”)

9 for r in results:

10 assert sel.is_text_pres-

ent(...) == true

11 sel.stop()

Listing 1. Example implementation of da-
ta-driven test procedure.

Lines 1-3 open the web page to be tested
in a web browser. Lines 4-5 write the test
data to the form using the type method.
The name of the form is stored in the k
variable, taken from the first row of the ta-
ble in Figure 1. In line 6, the click method
is used to perform the required action, and
the script then waits for a server response
in Line 7. In the final lines 8-11, we are
checking if the result page contains the ex-
pected text specified in our test data table.
We can check for multiple text elements
by separating them with the “;” sign.

Getting data

I recommend storing your test data in an
Excel spreadsheet. The advantage of this
approach is better visibility and organiza-
tion of data. For example, you can store
data for different web pages in separate
tabs, helping you keep your data in or-
der, and easing future maintenance. You
can also use Excel to calculate expected
results, in some cases, which saves you
time.

To access the Excel data, we are going
to use the Python library xlrd. In listing 2
below, you can find the part of the script
which is responsible for this task. In this
script, you open the file and specified by
index tab, then, in a loop, we are collect-
ing all data from all cells. Due to way we
organize data, the values from the first
row correspond to the header list, and
values from the other rows correspond to
actual data.

1 headers = []

2 book = open_

workbook(xlfilename)

3 sheet = book.sheet_by_

index(xlsheetIndex)

4 cols, rows = sheet.ncols,

sheet.nrows

5 data = [[None] * cols for i

in range(rows-1)]

6 for row_index in

range(rows):

7 for col_index in

range(cols):

8 if row_index == 0:

9 headers.append(sheet.

cell(row_index,col_index).val-

ue)

10 else:

11 data[row_index-1]

[col_index] =sheet.cell(row_

index,col_index).value

Listing 2.

Test Parametrization

P Our test procedure should be executed
for different data sets. If we use the unit-
test library and loops, you will end up with
quite a serious inconvenience. If, during
the test, you encounter an unexpected
result, the whole process will be stopped.
To continue with further tests, we would
need to analyze the fault and resolve it.

By using py.test, we can overcome this
problem. You can find sources and docu-
mentation at [2]. In py.test, all functions
with names starting with “test_” are treat-
ed as test functions, and executed by the
framework during testing. Let’s put code
from listing 1 into these test functions.

To prepare data for test framework re-
quires implementation of py.test_gener-
ate_tests function. At the beginning, we
will get data from the Excel file in Listing
2. Next, we are going to combine data
with header into dictionaries. By execut-
ing metafunc.addcall(funcargs=dict(actio
ns=d)) we are adding next data set. This
data we can access in test_actions func-
tion by action variable.

1 def pytest_generate_

tests(metafunc):

2 ...

3 for r in range(rows-1):

4 d = {}

5 n = 2

6 for i in

headers[2:]:

7 d[i] = data[r]

[n]

8 n = n + 1

9 metafunc.addcall(funcargs

= dict(actions = d))

10

11 def test_actions(actions):

12 ...

Listing 3.

Summary

Under http://coremag.eu/, you can find
the complete code for the proposed solu-
tion. It has some limitations, so I suggest
you modify it and adjust to your needs.
The main aim of this article is to demon-
strate how to implement DDT with Sele-
nium. In next articles, I will present more
widely applicable and complex solutions.

Acknowledgments

I would like to thank Mr. Justin Mega-
warne for proofreading and comments.

References

[1] Xlrd 	 http://www.python-excel.org/
[2] Py.test http://codespeak.net/py/dist/
test/index.html

Tabela 1. Example spreadsheet.

41

Software testing

Special gift from c0re
and testerzy.pl

Our partner, testerzy.pl, created an application for All

pairs generation.

The algorithm has been designed and tested by tes-

ters cooperating with testerzy.pl

The application is free for non-commercial usage and

available for all users registered on forum.testerzy.pl

and on c0re website.

To download the application: register on

http://forum.testerzy.pl/or register / login on

www.coremag.eu and check our Download section.

42

Software testing

OpenSta – OpenSource
for Web Load, HTTP
Stress & Performance
testing

Author: Łukasz Smolarski

basic

intermediate
advanced

About the author:

Łukasz Smolarski :
Graduated from Higher School of
Business-National Louis University
– faculty: “Computer Science” and
Leon Koźminski Academy – faculty:
“Management”. During his studies he won
a scholarship for leaders funded by GE
Foundation and Institute of International
Education. He currently works for Gtech
Polska on the position of Quality Software
Engineer as a Team Leader and person
responsible for test automation. In 2007
he passed ISTQB Foundation Level,
and in 2010 become AIS Certificated
Specialist in HP Mercury Quality Center
and Mercury QuickTestPro. Member of
SJSI. Contact: smolar2@op.pl

Introduction

Every single day in our work we can

notice that all types of tests are run
repetitiously – which obviously is wasting
a lot of valuable time. It’s a hard work
when every single scenario has to
be repeated several times. There’s a
selection of free tools which can help in
test automation process – in this article
I will describe one of them. The tool
named OpenSta is mainly designed for
measuring performance testing, however
it can also be used for other purposes,
such as automation of certain actions
performed in testing activities.

OpenSta is continuously developed free
tool which can be downloaded from http://
opensta.org website. Moreover, in case
of problems or questions, we can use the
forum for users of this tool and search or
ask for help.

First steps with OpenSta

After installation, OpenSta Commander
should be run. It’s the main screen of the
application and contains a tree, which is
our repository and place where we can
keep our scripts and tests.

The structure consists of three folders:
Collectors, Scripts and Tests. We will
focus on two folders. The first one is
Scripts, where, using SCL programming
language, we can create our scripts.
The second one is Tests, where, using
scripts created earlier, tests are created.
Additionally, in the upper part of the

application, there’s a menu containing
several useful options, as well as
extensive Help.

To create a new test, first we have to
create new scripts – it can be made by
choosing File ->New Script from top
Menu. When we double click on the
script, a recording window will open.

OpenSta supports both HTTP and
HTTPS protocols what distinguishes it
from other tools – like JMeter - and is one
of its main advantages. If we are using
Proxy server for internet connection, we
have to properly configure the browser. In
order to do it, click Options -> Browser
from the menu (applies to IE 8).

If we want to connect to remote Server,
it is possible by using settings from
Options->Gateway menu. Unfortunately,
you have to set up Proxy like shown on
picture 3. In other case OpenSta will not
be able to run.

Another function which is worth to
mention, is the possibility to declare
variables from Variable ->Create menu.
It allows to prepare variables used for
storing important values before recording
script will take place. In order to start
recording, click red button or choose
Capture->Record from the menu. After
that a browser will open and we can go
through our planned test scenario. To
finish recording, simply close the browser
or click on the Stop button.

43

Software testing

Picture 1 Main Screen of OpenSta

Picture 2. Creating Script in OpenSta

On the left side we can see the source
code of recorded scenario, declared
variables, environment information and
other data captured by OpenSta. As it was
mentioned before, source code is written
in SCL (Structured Control Language). If
any modifications need to be made after
recording, it’s possible by modifying the
script. After finishing the code must be

compiled, and, if there are no errors, we
can run the script by clicking green Play
button.

SCL language is not the simplest or
easiest one, but if we take a closer look,
we can notice some dependencies, such
as adding data to variables. On the next
picture we can see a piece of code which

was modified in order to retrieve data
from HTML generated by JavaScript –
OpenSta has recorded it as a permanent
value although it is generated dynamically.
Running the script caused errors as the
“old” value does not conform with the
current one, generated by the page –
hence it’s necessary to put the value as
variable.

44

Software testing

Picture 3. Proxy configuration

Picture 4. Source code view in OpenSta commander

If the script contains no errors, the
following message should be displayed:

After compilation, we can see „Get”
function in the code – it can be highlighted
using cursor – and when yellow arrow
appears in top menu, click on it. Then the
preview of recorded page will be shown.

Now we can see HTML structure, server
data and other useful information. We
can also go to HTML code by right click-
ing on the interesting part of code and

create variables, which can be used to
retrieve data from DOM module (it can
be used to retrieve information such as
details created by JavaScript).

By clicking on structure tab, we can pre-
view the page to see the entire structure
and all related elements and their val-
ues.

Additionally, by clicking HTML tab, we
can find a specific value in the code, and
after that, with right click, create variable

containing this value and put it in the
source code.

Now let’s focus on test creation. Return
to main page and choose File-> New
Test-> Tests from the top menu. After
that double click on the “Test” icon shown
in the tree - testing menu will be shown.

Next, choose the script you have just cre-
ated and drag it to the Task area. This
area is split to columns, where we can
add several scripts. It means that if we

45

Software testing

Picture 5. Modyfing source code

Picture 6. Compiling code

add some scripts to the same row, but
to different columns, they all will be ex-
ecuted at the same time. If we add some
scripts to different rows, they will be ex-
ecuted in certain order (Ascending).

In Test configuration there are some op-
tions, which can be controlled. Start op-

tion is used for setting begin time of ex-
ecuted tests (Immediate, delayed and
planned). Next setting is the number of
virtual users set for every single task.
Moreover we can split users in catego-
ries, i.e. Total amount of VU =1200, but 2
of them are assigned to “Timer Results”
and to “HTTP results” respectively.

There is also possibility to define users
directly in the source code (using loop) –
i.e. for the purpose of creating account
via bank website and checking how long
does it take to accomplish the task. We
can check this data in some reports
which will be described later. Now click
on the Run button and the test will start.

46

Software testing

Picture 7. Get function

Picture 8. Page preview

During test execution we can monitor the
progress and observe what is happen-
ing. This can be done via Monitoring tab.
We can also check Summary tab and
see how the test has been performed.
(Unfortunately these reports are not
user friendly since the information is not

clear enough). In addition we can check
whether any errors occurred during test
execution.

The functionality described above is
just a description of creating simple
test scenario. My intention was to show

only simple example of using OpenSta.
As you know there can be complex test
scripts created with many functions in-
side. Moreover, we can set up many
configuration options and – as the result
- tests will be run on different environ-
ments. During test execution we do not

47

Software testing

Picture 10. Creating variable with value taken from HTML tree

Picture 11. Testing menu

see how the script is going through web
pages. All operations are executed in the
background.

Like all other applications, OpenSta has
also some disadvantages. I would like to
describe some of them. One of them is

the fact, that recording via HTTPS some-
times doesn’t work - in this case we need
to record on HTTP and modify source
code to adjust it to HTTPS. This problem
is caused by some errors in the OpenSta
application and should be resolved in new
releases. Another problem with OpenSta

is that when we launch the browser, start-
ing page sometimes does not appear. To
solve this problem, proxy server needs to
be set up again – exactly like shown in the
pictures above. Another error which I’ve
noticed is the problem with the length of
characters while recording a script. Due

Software Engineering

48

Picture 12. Test configuration

Picture 13. Task settings

Picture 14. Report visible during test execution

Software Engineering

49

Picture 15. Results after test execution

Picture 16. Sample reports

to this fact compilation was failed. Fortu-
nately, if any error occurs, we are able to
see in which line of the code it happened
. In my case I reduced the length of string
and it started to work properly. (problem
with browser , cut to IE7 – String “User-
Agent: Mozilla/4.0 (compatible; MSIE
7.0; Windows NT 5.1; Mozilla/4.0 (com-
patible; MSIE 6.0; Windows NT 5.1; SV1)
; .NET CLR 1.1.4322; InfoPath.2; MEGA-
UPLOAD 2.0; .NET CLR 2.0.50727)”).

Summary

Summarizing, I think that OpenSta it is
a great free tool for performance test-
ing. Despite some disadvantages, it has
many useful functions allowing us to
easily check web load, stress and per-
formance of our application. Moreover
this tool is continuously developed and
maintained. It’s possible to join forum for
OpenSta users and ask for help in case of

any problems. I think nowadays it’s worth
to check and try new tools available on
the market as they can support our work
and optimize it. If you’d like to get more
knowledge about OpenSta, please refer
to the following resources:

http://www.opensta.org/
http://portal.opensta.org/

