
Манов П.А. Обзор JPEG-2000

This paper appeared in Proc. of IEEE Data Compression Conference, pp. 523-541,2000. When JPEG 2000 Part I went from 
CD to FCD the term "packet partition location" was changed to "precinct."

Abstract
JPEG-2000 is an emerging standard for still image compression. This paper provides a brief history of the 
JPEG-2000 standardization process, an overview of the standard, and some description of the capabilities 
provided by the standard. Part I of the JPEG-2000 standard specifies the minimum compliant decoder, while 
Part II describes optional, value-added extensions. Although the standard specifies only the decoder and 
bitstream syntax, in this paper we describe JPEG-2000 from the point of view of encoding. We take this 
approach, as we believe it  is more amenable to a compact  description more easily understood by most 
readers.

1    Introduction
As digital imagery becomes more commonplace and of higher quality, there is the need to manipulate more 
and  more  data.  Thus,  image  compression  must  not  only  reduce  the  necessary  storage  and  bandwidth 
requirements,  but  also  allow  extraction  for  editing,  processing,  and  targeting  particular  devices  and 
applications. The JPEG-2000 image compression system has a rate-distortion advantage over the original 
JPEG. More importantly, it also allows extraction of different resolutions, pixel fidelities, regions of interest, 
components, and more, all from a single compressed bitstream. This allows an application to manipulate or 
transmit only the essential information for any target device from any JPEG 2000 compressed source image. 
JPEG-2000 has a long list of features, a subset of which are:
•        State-of-the-art low bit-rate compression performance
•       Progressive transmission by quality, resolution, component, or spatial locality
•       Lossy and lossless compression (with lossless decompression available naturally through all types of 
progression)
•       Random (spatial) access to the bitstream
•       Pan and zoom (with decompression of only a subset of the compressed data)
•       Compressed domain processing (e.g., rotation and cropping)
•       Region of interest coding by progression
•       Limited memory implementations.
The JPEG-2000 project was motivated by Ricoh's submission of the CREW algorithm [1,2] to an earlier 
standardization  effort  for  lossless  and  near-lossless  compression  (now  known  as  JPEG-LS).  Although 
LOCO-I [3] was ultimately selected as the basis for JPEG-LS, it was recognized that CREW provided a rich 
set  of features worthy of a new standardization effort.  Based on a proposal authored largely by Martin 
Boliek [4], JPEG-2000 was approved as a new work item in 1996, and Boliek was named as the project 
editor. Many of the ideas in JPEG-2000 are inspired by the work of [1, 5, 6, 7]. Also in 1996, Dr. Daniel Lee 
of Hewlett-Packard was named as the Convener of ISO/IEC JTC1/SC29/WG1 (the Working Group charged 
with the development of JPEG-2000, hereinafter referred to as simply WG1).

2    The JPEG-2000 Development Process
A Call for Technical Contributions was issued in March 1997 [8], requesting compression technologies be 
submitted to an evaluation during the November 1997 WG1 meeting in Sydney, Australia. Further, WG1 
released  a  CD-ROM containing  40  test  images  to  be  processed  and  submitted  for  evaluation.  For  the 
evaluations, it was stipulated that compressed bitstreams and decompressed imagery be submitted for six 
different bitrates (ranging from 0.0625 to 2.0 bits per pixel (bpp)) and for lossless encoding. Eastman Kodak 
computed quantitative metrics for all images and bit rates, and conducted a subjective evaluation of 18 of the 
images (of various modalities) at three bit-rates in Sydney using evaluators from among the WG1 meeting 
attendees. The imagery from 24 algorithms was evaluated by ranking the perceived image quality of hard-
copy prints.
Although the performance of the top third of the submitted algorithms were statistically close in the Sydney 
evaluation, the wavelet/trellis coded quantization (WTCQ) algorithm, submitted by SAIC and the University 

1



of Arizona (SAIC/UA), ranked first overall in both the subjective and objective evaluations. In the subjective 
evaluation, WTCQ ranked first (averaged over the entire set of evaluated imagery) at 0.25 and 0.125 bpp, 
and second at 0.0625 bpp. In terms of RMS error averaged over all images, WTCQ ranked first at each of 
the six bitrates. Based on these results, WTCQ was selected as the reference JPEG-2000 algorithm at the 
conclusion of the meeting. It was further decided that a series of "core experiments" would be conducted to 
evaluate WTCQ and other techniques in terms of the JPEG-2000 desired features and in terms of algorithm 
complexity.
Results from the first round of core experiments were presented at the March 1998 WG1 meeting in Geneva. 
Based on these experiments, it was decided to create a JPEG-2000 "Verification Model" (VM) which would 
lead to a reference implementation of JPEG-2000. The VM would be the software in which future rounds of 
core experiments would be conducted, and the VM would be updated after each JPEG-2000 meeting based 
on the results of core experiments. SAIC was appointed to develop and maintain the VM software with 
Michael  Marcellin  as  the  head  of  the  VM  Ad  Hoc  Group.  Eric  Majani  (Canon-France)  and  Charis 
Christopoulos (Ericsson-Sweden) were also named as co-editors of the standard at that time. Results from 
round 1 core experiments were selected to modify WTCQ into the first release of the VM (VM 0).
2.1 The WTCQ Algorithm
The basic ingredients of the WTCQ algorithm are: the discrete wavelet transform, TCQ [9, 10] (using step 
sizes  chosen  via  a  Lagrangian  rate  allocation  procedure),  and  binary  arithmetic  bitplane  coding.  The 
embedding principle [5, 6, 1, 7, 11, 12, 13], asserts the encoded bitstream should be ordered in a way that 
maximally reduces MSE
per bit transmitted. In WTCQ embedding is provided by the bitplane coding similar to that of [1]. The 
bitplane  coding  operates  on  TCQ indices  (trellis  quantized  wavelet  coefficients)  in  a  way that  enables 
successive refinement. This is accomplished by sending bitplanes in decreasing order from most- to least-
significant. To exploit spatial correlations within bitplanes, spatial context models are used. In general, the 
context can be chosen within a subband and across subbands. The WTCQ bitplane coder avoids the use of 
inter-subband contexts to maximize flexibility in scalable decoding, and to facilitate parallel implementation. 
WTCQ also includes a "binary mode," a classification of coefficients,  multiple decompositions (dyadic, 
packet, and others), and difference images to provide lossless compression. A more complete description of 
WTCQ can be found in [14].
2.2 VM0-VM2
Additions and modifications to VM 0 continued over several meetings, with refinements contributed by 
many WG1 members. VM 2.0 supported user specified floating point and integer transforms, as well as user 
specified decompositions (dyadic, uniform, etc.). As a simpler alternative to the Lagrangian rate allocation, a 
fixed quantization table  ("Q-table") was included. This is  analogous to the current  JPEG standard [15]. 
When a Q-table is used, precise rate control can still be obtained by truncating the (embedded) bitstream. In 
addition to TCQ, scalar quantization was included in VM 2.
For  integer  wavelets,  scalar  quantization  with  step  size  1  was  employed  (i.e.,  no  quantization),  which 
allowed progression to lossless in the manner of CREW or SPIHT [16] (using the S+P transform). Rate 
control  for  integer  wavelets  was  accomplished  by  embedding,  and  lossless  compression  was  available 
naturally  from the  fully  decoded embedded bitstream.  Other  features,  such  as  tiling,  region  of  interest 
coding/decoding (University of Maryland, Mitsubishi, and Ericsson), error resilience (Motorola-Switzerland, 
TI, Sarnoff, UBC), approximate wavelet transforms with limited spatial support (Motorola-Australia, Canon-
France) were added to the VM, often from other original contributions to the Sydney meeting. For complete 
description of these and other technologies see [17].
Along with the additions described above, several refinements were made to the bitplane coder. The major 
changes were the de-interleaving of bitplanes and improvements to the context modeling. Within a given 
bitplane of each subband, the bits were "de-interleaved" into three "sub-bitplanes" of the following types: 1) 
bits predicted to be newly "significant," 2) "refinement" bits, and 3) bits predicted to remain "insignificant." 
The idea of sub-bitplanes was first presented in [13] for use with Golomb coding, and is motivated by rate-
distortion concerns [11, 12]. It is desirable to have the bits with the steepest rate-distortion slopes appear first 
in an embedded bitstream.
The de-interleaving employed in VM 2 was adapted from [13] for use with arithmetic coding, and did not 
use  the  parent  index  to  predict  significance.  Thus,  the  VM  2  bitplane  coder  has  no  inter-subband 
dependencies such as those used in [13] and in the zerotree based schemes of [5, 7]. This allows for a certain 
amount of parallelism and enables the type of progression present in the encoded bitstream to be changed 

2



without decoding (see the description of parsing in Section 5).
As in VM 0, all coding was carried out using context dependent binary arithmetic coding. The particular 
arithmetic coder employed is described in [18]. It  should be noted that,  when encoding a particular bit, 
neither significance prediction,  nor  context  modeling stages can use any information that would not  be 
available at the decoder when that bit needs to be decoded. Thus, for those wavelet coefficients that are non-
causal with respect to the scan pattern, only information from more significant bitplanes is used.
2.3 VM 3 - VM 5
At the November 1998 WG1 meeting in Los Angeles, David Taubman (then at Hewlett-Packard) presented 
EBCOT (embedded block coding with optimized truncation) [19, 20]. EBCOT included the idea of dividing 
each subband into rectangular blocks of coefficients and performing the bitplane coding independently on 
these "code-blocks" (rather than entire subbands as in previous VMs). This partitioning reduces memory 
requirements  in  both hardware  and software  implementations,  as  well  as  providing a  certain  degree of 
(spatial) random access to the bitstream. EBCOT also included an efficient syntax for forming the sub-
bitplane data of multiple code-blocks into "packets," which taken together form quality "layers."
Tremendous flexibility in the formation of packets and layers is left to the implementer of an encoder. The 
default policy in the VM encoder is to place in each layer the sub-bitplanes (among all sub-bitplanes not yet 
included in previous layers) with steepest rate-distortion slope (as estimated in the encoder). This policy 
aims to minimize the MSE at each point in the embedded bitstream and improves the MSE performance over 
a simple "round robin" ordering as implemented in VM 2. Other policies have been explored as well. One 
particularly interesting policy modifies the distortion estimates of each sub-bitplane consistent with visual 
masking properties. Thus, code-blocks in regions where more distortion can be tolerated (visually) are de-
emphasized  in  the  bitstream  formation.  Even  when  this  masking  policy  is  employed,  progressive 
transmission eventually results in lossless decompression (when integer wavelets are employed). The policy 
has little effect on the ultimate lossless file size (bitrate), but can have dramatic impact on the visual quality 
for partial (embedded) decoding at lower rates.
EBCOT was adopted for inclusion in VM 3 at the Los Angeles meeting. Taubman re-implemented the entire 
VM in an object-oriented manner at that time. In subsequent VM's, the block coder was refined to include 
only 3 passes (EBCOT used 4) similar to those of VM 2. Subsequent VM's were also modified with more 
"hardware friendly" context modeling, and scan pattern (within code-blocks) [21].
At the March 1999 WG1 meeting in Korea, the MQ-coder (submitted by Mitsubishi) was adopted as the 
arithmetic coder for JPEG-2000. This coder is functionally similar to the QM-coder available as an option in 
the original JPEG standard. The MQ-coder has some useful bitstream creation properties, is used in the 
JBIG-2 standard, and should be available on a royalty and fee free basis for ISO standards. In fact, one goal 
of WG1 has been the creation of a Part I which could be used entirely on a royalty and fee free basis. It is 
felt this is essential for the standard to gain wide acceptance as an interchange format (witness the large 
difference in utilization of JPEG with Huffman coding and JPEG with arithmetic coding).
At the same time as changes were being made to the internal coding algorithms, the syntax wrapping the 
compressed data was developed. This syntax is made up of a
sequence of markers, compatible with those of the original JPEG [15], with features added by Ricoh and 
Aerospace Corporation to allow the identification of relevant portions of the compressed data.
While the bitstream syntax provides all the data necessary for the decoder to recreate the input pixel array, 
applications often require additional information not present in the bitstream. One Annex of the JPEG-2000 
standard contains an optional minimal file format to include information such as the color space of the 
"pixels" and intellectual  property (copyright)  information for the image.  Hopefully the inclusion of this 
annex will prevent the proliferation of proprietary file formats that happened with the original JPEG. This 
optional file format is extensible and Part II will define storage of many additional types of "metadata."

3    Final Standardization
The  document  describing  the  JPEG-2000  Part  I  decoder  reached  "Committee  Draft"  (CD)  status  in 
December  1999.  Although technical  changes  are  still  possible,  they now require  support  of  a  "national 
body." In April 2000 the draft may obtain "Final Committee Draft" (FCD) form, and if work proceeds at the 
maximum possible rate under ISO rules, "Final Draft International Standard" (FDIS) in August 2000, and 
finally JPEG-2000 may become an "International Standard" (IS) in December 2000. Part II is scheduled to 
be eight months behind Part I, becoming an International Standard in July 2001.
It is worth noting that the standard specifies only the decoder and bitstream syntax. Although informative 

3



descriptions  of  some  encoding  functions  will  be  provided  in  the  text  of  the  standard,  there  are  no 
requirements that the encoder perform compression in any prescribed manner. This leaves room for future 
innovations in encoder implementations.
For the purpose of interchange it is important to have a standard with a limited number of options,  so 
decoders in browsers, printers, cameras, or PDAs can be counted on to implement all the options and an 
encoded image will be displayable by all devices. For this reason some choices have been limited in the 
standard. Part I, therefore, will describe the minimal decoder required for JPEG-2000, which should be used 
to provide maximum interchange. However, there are applications for image compression where interchange 
is less important than other requirements (e.g., ability to handle a particular type of data). Part II will consist 
of optional "value added" technologies, not required of all implementations. Of course, images encoded with 
Part II technologies usually will not be decodable by Part I decoders. Table 1 lists the various components of 
the compression system and the extensions likely for Part II. For example, Part I will require one floating-
point wavelet (9,7), and one integer wavelet (3,5), while Part II will allow multiple wavelets including "user 
defined."
Other items which are important for the adoption of JPEG-2000 did not fit properly in either the "minimum 
decoder" of Part I, or the "extensions" of Part II. Motion JPEG has been a commonly used method of editing 
high quality video (e.g., in production studios) without the existence of an ISO standard. Part III of JPEG-
2000 will be "Motion JPEG-2000." Part II of the original JPEG was a set of compliance tests to ensure 
quality implementation of the standard.  WG1 plans to provide JPEG-2000 compliance tests in Part  IV. 
Finally, the key to success of the JPEG-2000 standard may well be the
availability of high quality free software. The JJ2000 group (Cannon France, Ericsson, EPFL) has produced 
a Java implementation for standard promotion, and UBC has announced the intention to release C software. 
WG1 has started a Part V of the standard for encouraging development of free software.
Table 1: Division of the Standard Between Part I and Part II.
Technology PartI Part II
Bitstream Fixed and variable length markers. New markers can be skipped by a Part 

I decoder.
File format Optional.  Provide  intellectual  property 

(e.g.  copyright)  information,  color  or 
tone-space for image, general method of 
including metadata.

Allow metadata to be interleaved with 
coded data. Define types of metadata.

Arithmetic Coder MQ-coder. Same?
Coefficient Modeling Independent coding of fixed size blocks 

within  subbands.  Division  of 
coefficients  into  3  sub-bitplanes. 
Grouping of sub-bitplanes into "layers."

Special  models  for  binary  or  graphic 
data?

Quantization Scalar  quantizer  with  dead-zone, 
truncation of code-blocks.

Trellis Coded Quantization.

Transformation Low  complexity  (5,3)  and  high 
performance  Daubechies  (9,7).  Mallat 
decomposition.

Many  more  filters,  perhaps  "user-
defined"  filters.  Packet  and  other 
decompositions.

Component decorrelation Reversible component transform (RCT), 
YCrCb transform.

Arbitrary point transform or reversible 
wavelet transform across components.

Error Resilience Resynchronization markers. Fixed  length  entropy  coder,  repeated 
headers.

Bit-stream Ordering Progressive  by  tile-part,  then  SNR,  or 
resolution, or component.

Out of order tile-parts.

4    JPEG-2000 Coding Engine
4.1    Tiles and Component Transforms
In what follows, we provide a description of the JPEG-2000 coding engine. Our goal is to illuminate the key 
concepts at a sufficient level to impart a fundamental understanding of the algorithm without dwelling too 
much on details. In the standard, an image can consist of multiple components (e.g., RGB) each possibly 
subsampled  by  a  different  factor.  Conceptually,  the  first  algorithmic  step  is  to  divide  the  image  into 
rectangular, non-overlapping tiles on a regular grid. Arbitrary tile sizes are allowed, up to and including the 
entire image (i.e., no tiles). Components with different subsampling factors are tiled with respect to a high 

4



resolution grid, which ensures spatial consistency of the resulting tile-components. Each tile of a component 
must be of the same size, with the exception of tiles around the border (all four sides) of the image.
When encoding an image having multiple components such as RGB, a point-wise decorrelating transform 
may be applied across the components. Two transforms are
defined in Part I of the standard: 1) the YCrCb transform commonly used with original JPEG images, and 2) 
the  Reversible  Component  Transform (RCT)  which  provides  similar  decorrelation,  but  allows  lossless 
reconstruction  of  all  components  [22].  After  this  transform  all  components  are  treated  independently 
(although different quantization is  possible with each component,  as well  as  joint rate  allocation across 
components). For the sake of simplicity, we now describe the JPEG-2000 algorithm with respect to a single 
tile of a single component (e.g., gray level) image.
4.2    Partitions, Transforms, and Quantization
Given a tile, an L-level dyadic (pyramidal) wavelet transform is performed using either the (9,7) floating 
point wavelet [23], or the (5,3) integer wavelet [24]. Progression is possible with either wavelet but the (5,3) 
must be used if it is desired to progress to a lossless representation. Although we describe the algorithm here 
in terms of processing on an entire tile, more memory efficient implementations are possible using sliding-
window [25] or block-based transform techniques [26, 27].
From an L-level transform it is natural to reconstruct images at L+1 different "sizes," or "resolutions." We 
refer to the lowest frequency subband (LFS) as resolution 0, and the original image as resolution L. The LFS 
is also referred to as the resolution-level 0 subband. The three subbands needed to augment resolution j into 
resolution j+1 are referred to collectively as resolution-level j+1 subbands.
After transformation, all wavelet coefficients are subjected to uniform scalar quantization employing a fixed 
dead-zone  about  the  origin.  This  is  accomplished  by  dividing  the  magnitude  of  each  coefficient  by  a 
quantization step size and rounding down. One quantization step size is allowed per subband. These step 
sizes can be chosen in a way to achieve a given level of "quality" (as in many implementations of JPEG), or 
perhaps in some iterative fashion, to achieve a fixed rate. The default behavior of the VM is to quantize each 
coefficient rather finely, and rely on subsequent truncation of embedded bitstreams to achieve precise rate 
control. The standard places no requirement on the method used to select quantization step sizes. When the 
integer  wavelet  transform  is  employed,  the  quantization  step  size  is  essentially  set  to  1.0  (i.e.,  no 
quantization). In this case, precise rate control (or even fixed quality) is achieved through truncation of 
embedded bitstreams.
After quantization, each subband is subjected to a "packet partition." This packet partition divides each 
subband  into  regular  non-overlapping  rectangles.  Three  spatially  consistent  rectangles  (one  from  each 
subband at a given resolution level) comprise a packet partition location. The packet partition provides a 
medium-grain level of spatial locality in the bitstream for the purpose of memory efficient implementations, 
streaming, and (spatial) random access to the bitstream, at a finer granularity than that provided by tiles. 
Finally, code-blocks are obtained by dividing each packet partition location into regular non-overlapping 
rectangles. The code-blocks are then the fundamental entities for the purpose of entropy coding.
To recap, an image is divided into tiles and each tile is transformed. The subbands (of a tile) are divided into 
packet partition locations. Finally, each packet partition location is divided into code-blocks. This situation is 
illustrated in Figure 1. This figure depicts a packet partition of the subbands at resolution level 2 (of a 3-level 
dyadic wavelet transform of one tile). Also shown is the division of one packet partition location into twelve 
code-blocks.

5



Figure 1: Twelve code-blocks of one packet partition location at resolution level 2 of a 3-level dyadic 
wavelet transform. The packet partition location is emphasized by heavy lines.

4.3    Block Coding
Entropy coding is  performed independently  on each code-block.  This  coding is  carried out  as context-
dependent, binary, arithmetic coding of bitplanes. Consider a quantized code-block to be an array of integers 
in  sign-magnitude  representation,  then  consider  a  sequence  of  binary  arrays  with  one  bit  from  each 
coefficient. The first such array contains the most significant bit (MSB) of all the magnitudes. The second 
array contains the next MSB of all the magnitudes, continuing in this fashion until the final array which 
consists of the least significant bits of all the magnitudes. These binary arrays are referred to as bitplanes.
The number  of  bitplanes  in  a  given  code-block  (starting  from the  MSB) which  are  identically  zero  is 
signaled as side information, as described later. So, starting from the first bitplane having at least a single 1, 
each bitplane is encoded in three passes (referred to as sub-bitplanes). The scan pattern followed for the 
coding of bitplanes, within each code-block (in all subbands), is shown in Figure 2. This scan pattern is 
basically a column-wise raster within stripes of height four. At the end of each stripe, scanning continues at 
the beginning (top-left) of the next stripe, until an entire bitplane (of a code-block) has been scanned.
The prescribed scan is followed in each of the three coding passes. The decision as to which pass a given bit 
is coded in is made based on the "significance" of that bit's location and the significance of neighboring 
locations. A location is considered significant if a 1 has been coded for that location (quantized coefficient) 
in the current or previous bitplanes.
The first pass in a new bitplane is called the significance propagation pass. A bit is coded in this pass if its 
location is not significant, but at least one of its eight-connected neighbors is significant. If a bit is coded in 
this  pass,  and the value of that bit  is 1,  its location is marked as significant for the purpose of coding 
subsequent bits in the current
and subsequent bitplanes. Also, the sign bit is coded immediately after the 1 bit just coded. The second pass 
is the magnitude refinement pass. In this pass, all bits from locations that became significant in a previous 
bitplane are coded. The third and final pass is the clean-up pass, which takes care of any bits not coded in the 
first two passes.

Figure 2: Scan pattern for bitplane coding.
Table 2 shows an example of the coding order for the quantized coefficients of one 4-sample column in the 
scan. This example assumes all neighbors not included in the table are identically zero, and indicates in 
which pass each bit is coded. As mentioned above, the sign bit is coded after the initial 1 bit and is indicated 

6



in the table by the + or -sign. Note that the very first pass in a new block is always a clean-up pass because 
there can be no predicted significant, or refinement bits.

Table 2: Example of Sub-Bitplane Coding Order.
Coefficient Value

Coding Pass 10 1 3 -7
Clean-up 1+ 0 0 0

Significance 
Refinement 
Clean-up

0 0 0 1-

Significance 
Refinement 
Clean-up

1 0 1+ 1

Significance 
Refinement 
Clean-up

0 1+ 1 1

All coding is done using context dependent binary arithmetic coding. The arithmetic coder employed is the 
MQ-coder as specified in the JBIG-2 standard [28]. The coding for the first and third passes is identical, with 
the exception that run coding is sometimes employed in the third pass. Run coding occurs when all four 
locations in a column of the scan are insignificant and each has only insignificant neighbors. A single bit is 
then coded to indicate whether the column is identically zero or not. If not, the length of the zero run (0 to 3) 
is  coded,  reverting  to  the  "normal"  bit-by-bit  coding  for  the location  immediately  following the  1  that 
terminated the zero run. The sign and magnitude refinement bits are also coded using contexts designed 
specifically for that purpose.
For brevity, the computation to determine each context is not included here. However, unlike JBIG or JBIG-
2 which use thousands of contexts, JPEG-2000 uses no more than nine contexts to code any given type of bit 
(i.e., significance, refinement, etc.). This allows extremely rapid probability adaptation and decreases the 
cost of independently coded segments.
Before leaving this section, we mention a few issues regarding the arithmetic coding. The context models are 
always  reinitialized  at  the  beginning  of  each  code-block.  Similarly,  the  arithmetic  codeword  is  always 
terminated  at  the  end  of  each  code-block  (i.e.,  once,  at  the  end  of  the  last  sub-bitplane).  The  best 
performance is obtained when these are the only reinitializations/terminations. It is allowable however, to 
reset/terminate  at  the  beginning/end  of  every  sub-bitplane  within  a  code-block.  This  frequent 
reset/termination, plus optionally restricting context formation to include data from only the current and 
previous "scan-stripes" is sufficient to enable parallel encoding of all sub-bitplanes within a code-block (of 
course, parallel encoding of the code-blocks themselves is always possible). Reset/termination strategies can 
also impact the error resilience of the decoder. Finally, "selective arithmetic coder bypass" can be used to 
significantly reduce the number of symbols arithmetically coded. In this mode, the third coding pass of every 
bitplane employs arithmetic coding, as before. However, after the fourth bitplane is coded, the first and 
second passes are included as raw (uncompressed) data.  For natural  imagery,  all  of  these modifications 
produce a surprisingly small loss in compression efficiency. For other imagery types (graphics, compound 
documents, etc.) significant losses can be observed.
4.4    Packets and Layers
The compressed bitstreams associated with some number of sub-bitplanes from each code-block in a packet 
partition location are collected together to form the body of a "packet." The body of a packet is preceded by 
a packet header. The packet header contains: block inclusion information for each block in the packet (some 
blocks will have no coded data in any given packet); the number of completely zero bitplanes for each block; 
the number of sub-bitplanes included for each code-block; and the number of bytes used to store the coded 
sub-bitplanes of each block. It should be noted that the header information is coded in an efficient and 
embedded manner itself. The data contained in a packet header supplements data obtained from previous 
packet headers (within the same packet partition location) in a way to just enable decoding of the current 
packet. A discussion of this process is beyond the scope of this paper, for more details see [20].
Figure 3 depicts one packet for the packet partition location illustrated in Figure 1. Note that each of the 
twelve code-blocks can contribute a different number of sub-bitplanes (possibly zero) to the packet, and 
empty packet bodies are allowed.

7



Packet 
Header

n0 sub-bitplanes  from 
code-block 0

rii  sub-bitplanes from 
code-block 1

nn  sub-bitplanes  from 
code-block 11

Figure 3: The composition of one packet for the packet partition location of
Figure 1.

A packet can be interpreted as one quality increment for one resolution level at one spatial location (packet 
partition locations correspond roughly to spatial locations). A "layer" is then a collection of packets: one 
from each packet partition location of each resolution level. A layer then can be interpreted as one quality 
increment for the entire image at full resolution.
As noted above, there is no restriction on the number of sub-bitplanes contributed by each code-block to a 
given packet (layer). Thus, an encoder can format packets for a variety of purposes. For instance, consider 
the case when progression and the features provided by the packet partition are not of interest. The packet 
partitions can be set  larger than the subbands (turned off),  and all sub-bitplanes from all blocks can be 
included in a single packet per resolution layer. This provides the most efficient compression performance, 
as the packet header information is minimized under this scenario.
On the other hand, if progression by quality (embedding) is desired, a very small number of sub-bitplanes 
can  be  included  in  each  packet.  The  current  VM  supports  a  generic  scalable  setting  which  includes 
approximately 50 layers. In this case, on average, less than 1 sub-bitplane per code-block contribute to each 
packet. The strategy employed by the VM (many others are possible) to form packets in the 50 layer case is 
based on rate distortion theory. Each packet is constructed to include all sub-bitplanes with (estimated) rate-
distortion slope above a given threshold. This threshold is adjusted to achieve the desired size (bit-rate) for 
the aggregate of all  packets within the layer under construction. This provides very fine-grained quality 
(rate)  progression  at  the  expense  of  some  additional  overhead  due  to  the  (numerous)  packet  headers. 
Nevertheless, the VM provides start-of-the-art compression performance even with 50 layers.

5    JPEG-2000 Bitstream
JPEG-2000 provides better rate-distortion performance, for any given rate, than the original JPEG standard. 
However, the largest improvements are observed at very high and very low bitrates. The improvements in 
the "near visually lossless" realm are more modest (approximately 20%). Thus, widespread adoption of the 
new standard will likely be based on the JPEG-2000 feature set. While JPEG provided different methods of 
generating  progressive  bitstreams,  with JPEG-2000 the progression is  simply  a  matter  of  the order  the 
compressed bytes are stored in a file. Furthermore, the progression can be changed, additional quantization 
can  be  done,  or  a  server  can respond only with  the data  desired  by  a  client,  all  without  decoding  the 
bitstream.
5.1    Progression
There  are  four  basic  dimensions of  progression in  the JPEG-2000 bitstream: resolution,  quality,  spatial 
location, and component. Different types of progression are achieved by the ordering of packets within the 
bitstream.  Although  tiles  provide  an  important  mechanism for  spatial  progression,  we  assume  in  what 
follows (for simplicity) that the image consists of a single tile. Each packet is then associated with one 
component (say i), one layer (j), one resolution level (k), and one packet partition location (m). A bitstream 
for a color image having the usual type of progression by SNR (embedded) can be constructed by writing the 
packets using four nested loops. The innermost   loop   is   partition   location,   followed   by   resolution 
level,   followed   by component, with the outermost loop being by layer. For progressive by resolution, the 
order of nesting could be by partition location, layer, component, and resolution level. Another interesting 
progression results from making the outermost loop in the nesting "by component". The progression can 
then be by SNR or resolution for a gray scale image, with color information being added last. Similarly, 
spatial progression (or streaming) can be achieved by placing the packet partition location outmost in the 
nesting.
Finally,  we  note  that  the  progression  type  can  be  changed at  various  places  within  the  bitstream.  For 
example, it is possible to progress by SNR at a given (reduced) resolution, then change to progression by 
SNR at a higher resolution. The packets included in the bitstream will then be those needed in order for the 
higher resolution subbands to "catch up" to the current layer of the lower resolution image. This change in 
progression allows an icon to be displayed first, then a screen resolution image, and finally if needed a print 
resolution image. With a typical 5 level transform, a 1024 by 1024 pixel print resolution image can provide a 

8



256 by 256 screen resolution image, or a 32 by 32 icon. Progression by layer at each resolution allows the 
best possible image to be displayed at each resolution while receiving data over a slow connection.
As discussed previously, each layer provides more bits of some of the wavelet coefficients. The role of 
layers  in  providing  progression  by  SNR has  been  detailed  above.  However,  layering  is  a  much  more 
powerful concept. The layers need not be designed specifically for optimal SNR progression. For example, 
JPEG-2000 does not explicitly define a method of subsampling color components as JPEG does (JPEG 
provides subsampling on color components as a means to reduce computational complexity, and because it 
provides quantization the human visual system is unlikely to notice). A JPEG-2000 encoder, could place all 
the high frequency bands of the color components in the last layer. Discarding the last layer, would then 
have the same effect as subsampling in JPEG. A decoder which did not receive high frequency subbands 
could use a simplified transform to save computational complexity. Layers are of course much more general 
than subsampling. For images with significant color edges, some bits of the color coefficients might be 
saved in earlier layers.
5.2    Parsing
Even though a JPEG-2000 bitstream can be stored in any reasonable desired order, it can of course, only 
exist in one order at a time. However, because the coded data within packets are identical regardless of the 
progression type chosen, it is trivial to change the order, or to extract any required data from the bitstream.
The JPEG-2000 bitstream contains  markers which identify  the progression type of  the bitstream. Other 
markers may be written which store the length of every packet in the bitstream. To change a bitstream from 
progressive by resolution to progressive by SNR, a parser can read all  the markers, change the type of 
progression in the markers, write the lengths of the packets out in the new order, and write the packets 
themselves out in the new order. There is no need to run the MQ-coder, the context model, or even decode 
the block inclusion information. The complexity is only slightly higher than a pure copy operation.
Likewise, when sending a color image to a grayscale printer, there is no point in sending color information. 
A parser can read the markers from a 3 component file, and write markers for a one component file,  and 
discard all packets containing color components. Similarly, while editing, a compressed image might be 
stored at 2 bpp or even losslessly. If 2000 images are to be distributed on a CD-ROM, the layers contributing 
the least to quality can be discarded across the image set, until the required size is reached. Fifty layers 
provide enough information to extract almost any desired bitrate at any desired resolution.
5.3    Spatial Accessibility
All of the operations described in the previous section as "parsing" from one file to another file, could be 
performed on a server in response to requests, and the "parsed" bitstream could be sent out over a serial line 
instead of writing a new file. However, in addition to the whole image operations described previously, a 
client may wish to obtain compressed data for only a particular spatial portion of an image.
If the regions of interest (ROI) are known in advance, i.e. at encode time, JPEG-2000 provides additional 
methods of providing greater image quality in the foreground vs. the background. First, all of the code-
blocks which contain coefficients affecting the ROI can be identified, and the bitplanes of those coefficients 
can be stored in higher layers relative to other coefficients. Thus a layer progressive bitstream can naturally 
send the ROI with higher quality (earlier in the bitstream) than the background. It should be noted that fully 
lossless encoding of the entire image is still possible (with no loss in compression efficiency over the case 
without ROI's) when the (5,3) integer wavelet is employed.
In addition, an explicit ROI can be defined and those coefficients which affect the ROI can be shifted and 
coded as if they were in their own set of bitplanes. For an encoder, this allows individual coefficients to be 
enhanced rather than entire code-blocks (which must have the same set of sub-bitplanes included in each 
code-block without explicit  ROI).  The decoder does not need to calculate which coefficients have been 
shifted, it simply detects those coefficients which have bitplanes shifted by the encoder and shifts them down 
to the level of the other coefficients before the inverse wavelet transform. Fully lossless encoding is still 
possible, but with some loss in compression efficiency.
If the regions of interest are not known at encode time, there are still several methods for a "smart" server to 
provide exactly the right data to a client requesting a specific region. The simplest method to provide access 
to spatial regions of the image (which are not known at encode time) is for the encoder to tile the image. 
Since tiling divides the image spatially any region desired by the client will lie within one or more tiles. 
Tiles as small as 64 by 64 are useable although tiles this small increase the bitrate noticeably. Tiles over 256 
by 256 samples have almost no compression performance impact (but offer less flexible access for small 
regions). All of the parsing operations described previously on the whole image can selectively be applied to 

9



specific tiles. Other tiles could be discarded, or transmitted at a much lower quality (more of the data could 
be parsed). The bitstream contains the length of each tile (always in the tile header and optionally grouped in 
the main header), so it is always possible to locate the desired tiles with minimal complexity. Similarly, 
packet partitions can be extracted from the bitstream for spatial access. The length information is still stored 
in the tile header, and the data corresponding to a packet partition location are easily extracted. However, 
due to the filter impulse response lengths, care must taken to extract all data required to decode the region of 
interest. Finer grain access is possible by parsing individual code-blocks. As in the case of packet partition 
locations, it is necessary to determine which code-blocks affect which pixel locations (a single pixel can 
effect four different code-blocks within each subband and each resolution and each component). The correct 
packets containing these code-blocks can be determined from the progression order information. Finally, the 
location of the compressed data for the code-blocks can be determined by decoding the packet headers. All 
of this is substantially more difficult than identifying entire tiles of interest, but substantially easier than 
operating the arithmetic coder and context model to decode the data.
5.4    Image Editing and Compression
All uncompressed tiled image formats allow regions of an image to be edited, and only those tiles affected 
need to be rewritten to disk. With compression the compressed size of an edited tile can change. Because of 
the flexibility in quantization in JPEG-2000 it is possible to truncate an edited tile to fit in the previous size. 
Alternatively, Part II will allow out of order tiles within the bitstream so an edited tile could be rewritten at 
the end of the bitstream
The main header of a JPEG-2000 bitstream of course contains the width and height of the image, but it also 
contains a horizontal and vertical offset for the start of the image. This allows the image to be cropped (to a 
sub-rectangle of the original) without requiring a forward and inverse wavelet transform for recompression. 
In fact, all tiles inside the newly cropped image need not be changed at all, and tiles on the edge of the new 
image need only have the code-blocks on the edges recoded, and new tile headers and packet headers written 
to the bitstream (no wavelet transform).
JPEG-2000 Part I allows 90, 180, and 270 degree rotations, and horizontal and vertical flips of an image. 
These geometric manipulations can be performed without inverse or forward wavelet transform. However, 
all code-blocks need to be re-coded in the wavelet domain. Part II will allow the same transformations to be 
simply flagged in the bitstream, and left for the decoder to perform as each code block is decompressed.
Finally, the integer nature of the (5,3) wavelet allows an image or portion of an image to be compressed 
multiple times with the same quantization with no additional loss. Unfortunately, this is only true if the 
decompressed sample values are not clipped when they fall outside the full dynamic range (e.g., 0 to 255 for 
8 bit images). If the original image did not use the full dynamic range (for example 8 bit images using only 
32 to 220), then this is not an issue. If clipping occurs, the cycle of clipping and quantization can cause 
successive loss with each re-compression.

6    Performance
Figure 4 provides rate-distortion performance for two different JPEG modes, and three different JPEG-2000 
modes  for  the  bike  image  (grayscale,  2048  by  2560)  from  the  SCID  test  set.  The  JPEG  modes  are 
progressive (P-DCT) and sequential (S-DCT) both with optimized Huffman tables. The JPEG-2000 modes 
are single layer with the (9,7) wavelet (S-9,7), six layer progressive with the (9,7) wavelet (P6-9,7), and 7 
layer progressive with the (3,5) wavelet (P7-3,5). The JPEG-2000 progressive modes have been optimized 
for 0.0625, 0.125, 0.25, 0.5, 1.0, 2.0 bpp and lossless for the 5x3 wavelet. The JPEG progressive mode uses 
a combination of spectral refinement and successive approximation.

10



Figure 4: Rate-distortion performance for JPEG and JPEG 2000 on the SCID
bike image.

The JPEG-2000 results are significantly better than the JPEG results for all modes and all bitrates on this 
image.  Typically JPEG-2000 provides only a  few dB improvement  from 0.5 to  1.0  bpp but  substantial 
improvement below 0.25 bpp and above 1.5 bpp. It should be noted that there are images for which JPEG 
performance is very close to the (3,5) wavelet performance (at least between 0.5 and 1.5 bpp). It should also 
be noted that the progression in JPEG was not optimized for this image, while the JPEG-2000 progressive 
modes are optimized for the image. However, this is a key advantage of the progressive JPEG-2000 over 
progressive JPEG. With progressive JPEG the DCT coefficients remain unchanged, but the encoding of 
those coefficients in any scan depend on the previous stages, and the number of bits/coefficients coded in 
each stage. It is thus extremely difficult to optimize over all the progression possibilities. For JPEG-2000 the 
coded data bits do not change regardless of the method of progression or number of stages used (The packet 
headers  do  change,  but  this  is  a  second  order  effect).  Thus  it  is  relatively  easy  to  select  the  desired 
progression, for example by adding sub-bitplanes which improve the R-D the most until the desired rate is 
achieved.
With JPEG-2000 the progressive performance is almost identical to the single layer performance at the rates 
for which the progression was optimized. Once again, this is because the coded data bits do not change. The 
slight difference is due solely to the increased signaling cost for the additional layers (which changes the 
packet headers). It is possible to provide "generic rate scalability" by using upwards of fifty layers. In this 
case the "scallops" in the progressive curve disappear, but the overhead increases, so the curve is always 
lower than the single layer points. Although JPEG-2000 provides significantly lower distortion for the same 
bitrate, the computational complexity is significantly higher. Current JPEG-2000 software implementations 
run roughly a factor of three slower than optimized JPEG codecs. Speed of JPEG-2000 code should increase 
over  time  with  implementation  optimization,  but  the  multi-pass  bitplane  context  model  and  arithmetic 
entropy coder will prevent any software implementation from reaching the speed JPEG obtains with the 
DCT and Huffman coder.
JPEG-2000 also requires more memory than sequential JPEG, but not as much as might be expected. For 
conceptually simple implementations, encoders and decoders buffer entire code-blocks, typically 64 by 64 
for entropy coding. However, block based, or sliding window implementations of the wavelet transform 
allow  operation  on  just  a  few  code-blocks  at  a  time.  For  highly  optimized,  pipelined,  parallel 
implementations, entropy coding can proceed without buffering of code-blocks. Short and wide codeblocks 
(say 4 by 512) can also be employed to limit the memory requirements of the overall system when sliding 
window wavelet transforms are employed.
Progressive  JPEG-2000  can  actually  use  less  memory  than  progressive  JPEG  (although  at  additional 
computational cost). For progressive JPEG decompression, typically an entire coefficient buffer the size of 
the image is kept, coefficients are updated as data is decoded and the inverse DCT is performed to update the 
screen.  JPEG-2000  implementations  can  keep  just  the  compressed  data  in  memory  and  augment  the 
compressed data with new data, then decode a code-block, and perform the inverse wavelet transform.

11



Table 3: Lossless performance of JPEG, JPEG-LS, and JPEG-2000.
Method Aerial2 Bike Barbara Cmpnd1
JPEG 5.589 4.980 5.663 2.478
JPEG-LS 5.286 4.356 4.863 1.242
JPEG-2000
(50 layers) 5.467 4.562 4.823 2.166
JPEG-2000
(One layer) 5.441 4.541 4.783 2.138

Table 3 shows the lossless performance of JPEG, JPEG-LS, and JPEG-2000. JPEG uses a predictor and 
Huffman coding (no DCT). In each case the best of all predictors has been used, and Huffman tables have 
been optimized. For primarily continuous-tone imagery as in the Aerial2, Bike, and Barbara images, JPEG-
2000 is close to JPEG-LS, and substantially better than JPEG lossless. For images with text and graphics 
(2/3 of the Cmpnd1 image contains only rendered text), JPEG-LS provides almost a factor of two gain over 
JPEG lossless and JPEG-2000. Of course, the entire feature set is available for even losslessly compressed 
JPEG-2000 imagery, while the other two algorithms can provide only lossless raster-based decompression 
(for each tile). Hopefully, Part II of JPEG-2000 will improve performance on compound imagery.
Table 4 shows the PSNR obtained with JPEG-2000 on the Bike image with various encoding modes at 1.0 
and 0.25 bpp. For comparison the image was first encoded with 512 by 512 tiles, 64 by 64 code-blocks, the 
(3,5) wavelet, and 7 rate-distortion optimized layers from 0.0625, to 2.0 bpp, and lossless. The remaining 
lines in the table show slight modifications from this reference. Using 128 by 128 tiles has a noticeable 
affect, especially at lower bitrates. But the 512 by 512 tiles had little impact over no tiles at all.
16
Reducing the code-block size also has a noticeable impact on compression, but it does not vary with bitrate. 
The  (9,7)  wavelet  and  non-SNR-progressive  (one  layer)  encodings  provide  a  significant  performance 
increase. Providing complete rate scalability (50 layers) has a slight cost. Finally, values for sequential JPEG 
with optimized Huffman tables are in the last line.

Table 4: Performance Effects of Encoder Options on Bike Image.
Encode Method PSNR (dB)

1.0 bpp 0.25 bpp
Reference 37.27 29.00
128 by 128 Tiles 36.81 28.16
No Tiles 37.31 29.08
32 by 32 Code-blocks 37.10 28.86
50 Layers 37.17 28.81
One Layer 37.73 29.19
(9,7) Wavelet 38.05 29.55
JPEG 34.37 27.21

7    Conclusion
The definition of JPEG-2000 is of course the standard. ISO sells copies of the specification but only after the 
"International Standard" stage is reached. Drafts of the standard and much more information are available by 
joining the WG1 committee or the appropriate national body responsible for sending delegates. Hopefully, 
free software will soon be available so the features can be tested by anyone.
JPEG-2000 is unlikely to replace JPEG in low complexity applications at bitrates in the range where JPEG 
performs well.  However, for applications requiring either higher quality or lower bitrates, or any of the 
features provided, JPEG-2000 should be a welcome standard.

References
1.   A. Zandi, J. D. Allen, E. L. Schwartz, and M. Boliek, "CREW: Compression with reversible embedded 
wavelets," Proc.  of IEEE Data  Compression  Conference, Snowbird, Utah, pp. 212-221, March 1995.
2.    M.  Boliek,  M. Gormish,  E.  L.  Schwartz,  and A.  F.  Keith,  "Decoding compression with reversible 
embedded wavelets (CREW) codestreams," Journal of Electronic Imaging, vol. 7, no. 3, pp. 402-209, July 
1998.
3.   M.   Weinberger,   G.   Seroussi,   and   G.   Sapiro,   "The   LOCO-I   lossless   image compression 
algorithm: principles and standardization into JPEG-LS," submitted to IEEE Trans. on Image Proc.

12



4.   M. Boliek, "New work item proposal: JPEG2000 image coding system,"  ISO/IEC JTC1/SC 29/WG1 
N390, June 1996.
5.   J.  Shapiro, "Embedded image coding using zerotrees of wavelet  coefficients,"  IEEE Trans. on Sig.  
Proc., vol. 41, no. 12, pp. 3445-3462, Dec. 1993.
6.   D. Taubman and A. Zakhor, "Multirate 3-D subband coding of video," IEEE Trans. on Image Proc., vol. 
3, no. 5, pp. 572-588, Sept. 1994.
7.    A. Said and W. A.  Pearlman,  "A new fast  and efficient  image codec based on set  partitioning in 
hierarchical trees,"  IEEE Trans. on Circuits and Systems for Video Tech.,  vol. 6, no. 3, pp. 243-250, June 
1996.
8.   "Call for contributions for JPEG 2000 (JTC 1.29.14, 15444): image coding system," ISO/IEC JTC1/SC 
29/WG1 N505, March 1997.
9.    M. W. Marcellin and T. R. Fischer,  "Trellis coded quantization of memoryless and Gauss-Markov 
sources," IEEE Trans. on Commun., vol. 38, no. 1, pp. 82-93, Jan 1990.
10. J. H. Kasner, M. W. Marcellin, B. R. Hunt, "Universal trellis coded quantization," IEEE Trans. on Image 
Proc., vol. 8, no. 12, pp. 1677-1687, Dec. 1999.
11. J. Li, P. Cheng, and C.-C. J. Kuo, "On the improvements of embedded zerotree wavelet (EZW) coding," 
in Proc. SPIE, Vis. Comm. and Image Proc., vol. 2601, pp. 1490-1501, Taipei, Taiwan, May 1995.
12. J. Li and S. Lei, "Rate-distortion optimized embedding," Proc. of Picture Coding Symposium, pp. 201-
206, 1997.
13. E.   Ordentlich,  M.  Weinberger,  and G.  Seroussi,   "A  low-complexity  modeling approach for 
embedded coding  of wavelet coefficients," Proc.  of IEEE Data Compression Conf., pp. 408-417, 1998.
14. P. J. Sementilli, A. Bilgin, J. H. Kasner, M. W. Marcellin, "Wavelet TCQ: submission to JPEG-2000," 
Proc. of SPIE, Appl. of Digital Image Proc., pp. 2-12, July 1998.
15.  W. B.  Pennebaker  and J.  L.  Mitchell,  JPEG still  image data compression standard,  Van Nostrand 
Reinhold, New York, 1993.
16.  A.  Said  and  W.  A.  Pearlman,  "An  image  multiresolution  representation  for  lossless  and  lossy 
compression," IEEE Trans. Image Proc., vol. 5, no. 9, pp. 1303-1310, Sept. 1996.
17. C.   Christopoulos,   "JPEG-2000  verification  model  2.0   (technical   description)," ISO/IEC JTC 1/SC 
29/WG 1 N988, Oct. 1998.
18. D. Speck, "New options in radix-255 arithmetic coder," ISO/IEC JTC1/SC 29/WG1 N482R, March 1997.
19. D. Taubman, "Report on coding experiment codeff22: EBCOT (Embedded block coding with optimized 
truncation)," ISO/IEC JTC1/SC 29/WG1 N1020R, October 1998.
20. D. Taubman, "High performance scalable image compression with EBCOT," to appear in IEEE Trans.  
on Image Proc.
21. SAIC/UA, HP/UNSW, HP, WSU, Kodak, "Report on core experiments codEff4, codEff5  and  codEff7: 
reduced  complexity  entropy  coding,"  ISO/IEC JTC1/SC 29/WG1 N1312, June 1999.
22.  M.  J.  Gormish,  E.  L.  Schwartz,  A.  Keith,  M.  Boliek,  and  A.  Zandi,  "Lossless  and  nearly  lossless 
compression for high quality images," Proc. of SPIE,  Very High Resolution and Quality Imaging II, pp. 62-
70, February 1997.

13


